
Journal of Computational Physics 441 (2021) 110444
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

SelectNet: Self-paced learning for high-dimensional partial
differential equations

Yiqi Gu a, Haizhao Yang b,∗, Chao Zhou c,1

a Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, 119076, Singapore
b Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
c Department of Mathematics, City University of Hong Kong, Kowloon Tong, Hong Kong

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 21 May 2021

Keywords:
High-dimensional PDEs
Deep neural networks
Self-paced learning
Selected sampling
Least square method
Convergence

The least squares method with deep neural networks as function parametrization has been
applied to solve certain high-dimensional partial differential equations (PDEs) successfully;
however, its convergence is slow and might not be guaranteed even within a simple
class of PDEs. To improve the convergence of the network-based least squares model, we
introduce a novel self-paced learning framework, SelectNet, which quantifies the difficulty
of training samples, treats samples equally in the early stage of training, and slowly
explores more challenging samples, e.g., samples with larger residual errors, mimicking
the human cognitive process for more efficient learning. In particular, a selection network
and the PDE solution network are trained simultaneously; the selection network adaptively
weighting the training samples of the solution network achieving the goal of self-paced
learning. Numerical examples indicate that the proposed SelectNet model outperforms
existing models on the convergence speed and the convergence robustness, especially for
low-regularity solutions.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

High-dimensional partial differential equations (PDEs) are important tools in physical, financial, and biological models
[39,20,64,22,61]. However, developing numerical methods for high-dimensional PDEs has been challenging due to the curse
of dimensionality in the discretization of the problem. For example, in traditional methods such as finite difference methods
and finite element methods, O (Nd) degree of freedom is required for a d-dimensional problem if we set N grid points or
basis functions in each direction to achieve O (1

N) accuracy. Even if d becomes moderately large, the exponential growth Nd

in the dimension d makes traditional methods immediately computationally intractable.
Recent research of the approximation theory of deep neural networks (DNNs) shows that deep network approximation is

a powerful tool for mesh-free function parametrization. The research on the approximation theory of neural networks traces
back to the pioneering work [9,26,1] on the universal approximation of shallow networks with sigmoid activation functions.
The recent research focus was on the approximation rate of DNNs for various function spaces in terms of the number of
network parameters showing that deep networks are more powerful than shallow networks in approximation efficiency.

* Corresponding author.
E-mail addresses: matguy@nus.edu.sg (Y. Gu), haizhao@purdue.edu (H. Yang), chaozhou@cityu.edu.hk (C. Zhou).

1 On leave from Department of Mathematics, National University of Singapore.
https://doi.org/10.1016/j.jcp.2021.110444
0021-9991/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2021.110444
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2021.110444&domain=pdf
mailto:matguy@nus.edu.sg
mailto:haizhao@purdue.edu
mailto:chaozhou@cityu.edu.hk
https://doi.org/10.1016/j.jcp.2021.110444

Y. Gu, H. Yang and C. Zhou Journal of Computational Physics 441 (2021) 110444
For example, smooth functions [44,42,62,18,47,60,16,15,17], piecewise smooth functions [51], band-limited functions [49],
continuous functions [63,55,54]. The reader is referred to [54] for the explicit characterization of the approximation error
for networks with an arbitrary width and depth.

In particular, deep network approximation can lessen or overcome the curse of dimensionality under certain circum-
stances, making it an attractive tool for solving high-dimensional problems. For functions admitting an integral represen-
tation with a one-dimensional integral kernel, no curse of dimensionality in the approximation rate can be shown via
establishing the connection of network approximation with the Monte Carlo sampling or equivalently the law of large
numbers [1,16,15,17,49]. Based on the Kolmogorov-Arnold superposition theorem, for general continuous functions, [45,24]
showed that three-layer neural networks with advanced activation functions can avoid the curse of dimensionality and the
total number of parameters required is only O (d); [48] proves that deep ReLU network approximation can lessen the curse
of dimensionality, if target functions are restricted to a space related to the constructive proof of the Kolmogorov-Arnold
superposition theorem in [4]. If the approximation error is only concerned on a low-dimensional manifold, there is no curse
of dimensionality for deep network approximation in terms of the approximation error [7,5,54]. Finally, there is also exten-
sive research showing that deep network approximation can overcome the curse of dimensionality when they are applied
to approximation certain PDE solutions, e.g. [27,29].

As an efficient function parametrization tool, neural networks have been applied to solve PDEs via various approaches.
Early work in [38] applies neural networks to approximate PDE solutions defined on grid points. Later in [11,36], DNNs
are employed to approximate solutions in the whole domain, and PDEs are solved by minimizing the discrete residual er-
ror in the L2-norm at prescribed collocation points. DNNs coupled with boundary governing terms by design can satisfy
boundary conditions [46]. Nevertheless, designing boundary governing terms is usually difficult for complex geometry. An-
other approach to enforcing boundary conditions is to add boundary errors to the loss function as a penalized term and
minimize it as well as the PDE residual error [23,37]. The second technique is in the same spirit of least squares meth-
ods in finite element methods and is more convenient in implementation. Therefore, it has been widely utilized for PDEs
with complex domains. However, network computation was usually expensive, limiting the applications of network-based
PDE solvers. Thanks to the development of GPU-based parallel computing over the last two decades, which greatly boosts
the network computation, network-based PDE solvers were revisited recently and have become a popular tool, especially
for high-dimensional problems [13,19,25,33,58,3,65,40,2,29,28,6,53,41]. Nevertheless, most network-based PDE solvers suffer
from robustness issues: their convergence is slow and might not be guaranteed even within a simple class of PDEs.

To ease the issue above, we introduce a novel self-paced learning framework, SelectNet, to adaptively choose training
samples in the least squares model. Self-paced learning [35] is a recently raised learning technique that can choose a
part of the training samples for actual training over time. Specifically, for a training data set with n samplings, self-paced
learning uses a vector v ∈ {0, 1}n to indicate whether each training sample should be included in the current training stage.
The philosophy of self-paced learning is to simulate human beings’ learning style, which tends to learn easier aspects of
a learning task first and deal with more complicated samples later. Based on self-paced learning, a novel technique for
selected sampling is put forward, which uses a selection neural network instead of the 0-1 selection vector v . Hence, it
learns to avoid redundant training information and speeds up the convergence of learning outcomes. This idea is further
improved in [30] by introducing a DNN to select training data for image classification. Among similar works, a state-of-the-
art algorithm named SelectNet is proposed in [43] for image classification, especially for imbalanced data problems. Based
on the observation that samples near the singularity of the PDE solution are rare compared to samples from the regular part,
we extend the SelectNet [43] to network-based least squares models, especially for PDE solutions with certain irregularity. As
we shall see later, numerical results show that the proposed model is competitive with the traditional (basic) least squares
model for analytic solutions, and it outperforms others for low-regularity solutions, in the aspect of the convergence speed.
It is worth noting that our proposed SelectNet model is essentially tuning the weights of training points to realize the
adaptive sampling. Another approach is to change the distribution of training points, such as the residual-based adaptive
refinement method [32].

The organization of this paper is as follows. In Section 2, we introduce the least squares methods and formulate the
corresponding optimization model. In Section 3, we present the SelectNet model in detail. In Section 4, we put forward the
error estimates of the basic and SelectNet models. In Section 5, we discuss the network implementation in the proposed
model. In Section 6, we present ample numerical experiments for various equations to validate our model. We conclude
with some remarks in the final section.

2. Least squares methods for PDEs

In this work, we aim at solving the following (initial) boundary value problems, giving a bounded domain � ⊂ Rd:

• elliptic equations

Dxu(x) = f (x), in �,

B u(x) = g (x), on ∂�; (2.1)

x 0

2

Y. Gu, H. Yang and C. Zhou Journal of Computational Physics 441 (2021) 110444
• parabolic equations

∂u(x, t)

∂t
−Dxu(x, t) = f (x, t), in � × (0, T),

Bxu(x, t) = g0(x, t), on ∂� × (0, T),

u(x,0) = h0(x), in �;
(2.2)

• hyperbolic equations

∂2u(x, t)

∂t2
−Dxu(x, t) = f (x, t), in � × (0, T),

Bxu(x, t) = g0(x, t), on ∂� × (0, T),

u(x,0) = h0(x),
∂u(x,0)

∂t
= h1(x) in �;

(2.3)

where u is the solution function; f , g0, h0, h1 are given data functions; Dx is a spatial differential operator concerning the
derivatives of x; Bx is a boundary operator specifying a Dirichlet, Neumann or Robin boundary condition.

In this method, the temporal variable t will be regarded as an extra spatial coordinate, and it will not be dealt with
differently from x. For simplicity, the PDEs in (2.1)-(2.3) are unified in the following form

Du(x) = f (x), in Q ,

Bu(x) = g(x), in �,
(2.4)

where x includes the spatial variable x and possibly the temporal variable t; Du = f represents a generic PDE; Bu = g
represents the governing conditions including the boundary condition and possibly the initial condition; Q and � are the
corresponding domains of the equations.

Now we seek a neural network u(x; θ) approximating the solution u(x) of the PDE (2.4). Note the residual errors for the
PDE and the governing conditions can be written by

RQ (u(x; θ)) := Du(x; θ) − f (x), R�(u(x; θ)) := Bu(x; θ) − g(x). (2.5)

One can solve the PDE by searching for the optimal parameters of the network that minimize these residual errors, i.e.

min
θ

‖RQ (u(x; θ))‖2
Q + λ‖R�(u(x; θ))‖2

�, (2.6)

where ‖ · ‖∗ is usually the L2-norm and λ is a parameter for weighting the sum, e.g.,

min
θ

Ex∈Q

[
|Du(x; θ) − f (x)|2

]
+ λEx∈�

[
|Bu(x; θ) − g(x)|2

]
. (2.7)

3. SelectNet model

The network-based least squares model has been applied to solve certain high-dimensional PDEs successfully. However,
its convergence is slow and might not be guaranteed. To ease this issue, we introduce a novel self-paced learning framework,
SelectNet, to adaptively choose training samples in the least squares model. The basic philosophy is to mimic the human
cognitive process for more efficient learning: learning first from easier examples and slowly exploring more complicated
ones. The proposed model is related to selected sampling [8,31], an important tool of deep learning for computer science
applications. Nevertheless, the effectiveness of selected sampling in scientific computing has not been fully explored yet.

In particular, a selection network φs(x; θs) (subscript s for “selection”) and the PDE solution network u(x; θ) are trained
simultaneously; the selection network adaptively weighting the training samples of the solution network achieving the
goal of self-paced learning. φs(x; θs) is a “mentor” helping to decide whether a sample x is important enough to train the
“student” network u(x; θ). The “mentor” could avoid redundant training information and help to speed up the convergence.
This idea is originally from self-paced learning [35] and is further improved in [30] by introducing a DNN to select training
data for image classification. Among similar works, a state-of-the-art algorithm named SelectNet was proposed in [43] for
image classification, especially for imbalanced data problem. Based on the observation that samples near the singularity of
the PDE solution are rare compared to samples from the regular part, we extend the SelectNet [43] to network-based least
squares models, especially for PDE solutions with certain irregularity.

Originally in image classification, for a training data set D = {(xi, yi))}n
i=1, self-paced learning uses a vector v ∈ {0,1}n

to indicate whether or not each training sample should be included in the current training stage (vi = 1 if the ith sample
is included in the current iteration). The overall target function including v is
3

Y. Gu, H. Yang and C. Zhou Journal of Computational Physics 441 (2021) 110444
minθ,v∈{0,1}n

n∑
i=1

viL(yi, φ(xi; θ)) − λ

n∑
i=1

vi, (3.1)

where L(yi, φ(xi; θ)) denotes the loss function of a DNN φ(xi; θ) for classifying a sample xi to yi . When this model is
relaxed to v ∈ [0, 1]n and the alternative convex search is applied to solve the relaxed optimization, a straightforward
derivation easily reveals a rule for the optimal value for each entry v(t)

i in the t-th iteration as

v(t)
i = 1, if L(yi, φ(xi; θ(t))) < λ, and v(t)

i = 0, otherwise. (3.2)

A sample with a smaller loss than the threshold λ is treated as an “easy” sample and will be selected in training. Let us
assume that the variables v and θ are trained alternatively. When computing θ(t+1) with a fixed v(t) , the classifier is trained
only on the selected “easy” samples. When computing v (t+1) with a fixed θ(t+1) , the vector v help to adjust the training
samples to be used in computing θ(t+2) . It was shown by extensive numerical experiments that this mechanism helps to
reduce the generalization error for image classification when the training data distribution is usually different from the test
data distribution [35]. In [30,43], a selection network φs(x; θs) ∈ [0, 1] is trained to select training samples instead of using
the binary vector v with the following loss function:

minθ,θs

n∑
i=1

φs(xi; θs)L(yi, φ(xi; θ)) − λ

n∑
i=1

φs(xi; θs). (3.3)

The introduction of the selection network has mainly three advantages. First, it changes the discrete optimization problem
in (3.1) to a continuous optimization problem in (3.3) that is much easier to solve. Besides, the selection network with
values in [0, 1] can more adaptive adjust the weights to each sample. Finally, the number of parameters in the selection
network can be much smaller than the size of v , since usually a small selection network is good enough to decide weights
roughly.

The self-paced idea can also be applied to the preceding least squares model for solving PDEs. One naive way is to
rewrite the optimization (2.7) as

min
θ

1

N1

N1∑
i=1

v ′
i|Du(x1

i ; θ) − f (x1
i)|2 + λ

N2

N2∑
i=1

v ′′
j |Bu(x2

i ; θ) − g(x2
i)|2, (3.4)

where {x1
i }N1

i=1 ⊂ � and {x2
i }N2

i=1 ⊂ ∂� are random samples; v ′
i and v ′′

i are adaptive binary weights denoting if the samples are
selected or not in the loss. Similar adaptive sampling techniques can be found in [50,14]. Solving PDEs using deep learning
is different from conventional supervised learning, where sample data are fixed without the flexibility to be arbitrary in the
problem domain. The training and testing data distributions are the same, and there is no limitation for sampling when we
solve PDEs. Therefore, appropriately selecting training data and assigning weights v ′ and v ′′ in each optimization iteration
can better facilitate the convergence of deep learning to the true PDE solution.

Intuitively, a good strategy is to first choose “easy” samples to quickly identify a rough PDE solution and then use more
“difficult” samples with large residual errors to refine the PDE solution. For example, in the early stage of the training,
random samples are uniformly drawn in the PDE domain; in the latter stage of the training, we can select samples with
almost the highest residual errors for training. However, this naive selection strategy might be too greedy: large residual
errors usually occur where the PDE solution is irregular (e.g., near low regularity points), resulting in selected training
samples gathering around these “difficult” points with few samples in other regions. Note that deep neural networks are
functions globally supported in the PDE domain. Training with samples restricted in a small area may lead to large test
errors in other areas. In our experiments, we observe that this naive selection strategy applied to (3.4) even works worse
than the basic model (2.7) (see the numerical example in Section 6.1.2).

Borrowing the idea in [30,43], we introduce two neural networks, φ′
s(x; θ ′

s) and φ′′
s (x; θ ′′

s), named as the selection network
for the PDE residual error and the boundary condition error, respectively, to replace v ′ and v ′′ in (3.4). The introduction
of selection networks admits three main advantages over the naive binary weights, as discussed previously for the models
in (3.1) and (3.3). According to the discussion in the last paragraph, the selection networks φ′

s(x; θ ′
s) and φ′′

s (x; θ ′′
s) should

satisfy the following requirements. 1) As weight functions, they are required to be non-negative and bounded. 2) They
should not have a strong bias for weighting samples in the early stage of training. 3) They prefer higher weights for samples
with larger point-wise residual errors in the latter stage of training.

For the first requirement, φ′
s(x; θ ′

s) and φ′′
s (x; θ ′′

s) are enforced to satisfy

m0 < φ′
s(x; θ ′

s) < M0, ∀x ∈ Q and ∀θ ′
s, (3.5)

m0 < φ′′
s (x; θ ′′

s) < M0, ∀x ∈ � and ∀θ ′′
s , (3.6)

where M0 > 1 > m0 ≥ 0 are prescribed constants. Note the conditions (3.5)-(3.6) hold automatically if the last layer of
activation functions of φ′

s(x; θ ′
s) and φ′′

s (x; θ ′′
s) is bounded (e.g., using a tanh or sigmoid activation function) and the network
4

Y. Gu, H. Yang and C. Zhou Journal of Computational Physics 441 (2021) 110444
output is properly re-scaled and shifted as we shall discuss later in the next section. Therefore, the corresponding weighted
least squares method is formulated by

Ex∈Q

[
φ′

s(x; θ ′
s)|Du(x; θ) − f (x)|2

]
+ λEx∈�

[
φ′′

s (x; θ ′′
s)|Bu(x; θ) − g(x)|2

]
. (3.7)

For the second requirement, when the selection networks are randomly initialized with zero bias and random weights
with a zero mean and a small variance, the selection networks are random functions close to a constant. Therefore, the
selection networks have no bias in weighting samples in the early stage of training.

The third requirement can also be satisfied. Based on the principle that higher weights should be added to samples with
larger point-wise residual errors, we can train φ′

s(x; θ ′
s) and φ′′

s (x; θ ′′
s) via

max
θ ′

s,θ
′′
s

Ex∈Q

[
φ′

s(x; θ ′
s)|Du(x; θ) − f (x)|2

]
+ λEx∈�

[
φ′′

s (x; θ ′′
s)|Bu(x; θ) − g(x)|2

]
(3.8)

subject to the normalization conditions,

1

|Q |
∫
Q

φ′
s(x; θ ′

s)dx = 1,
1

|�|
∫
�

φ′′
s (x; θ ′′

s)dx = 1. (3.9)

Note in (3.8), to achieve the maximum of the loss function, φ′
s(x; θ ′

s) tends to take larger values where |Du(x; θ) − f (x)| is
larger, and take smaller values elsewhere. Also, φ′

s(x; θ ′
s) will not take large values everywhere since it is normalized by (3.9).

The same mechanism is also true for φ′′
s (x; θ ′′

s). In the latter stage of training, φ′
s(x; θ ′

s) and φ′′
s (x; θ ′′

s) have been optimized
by the maximization problem above to choose “difficult” samples and, hence, the third requirement above is satisfied.

For simplicity, we can combine (3.8) and (3.9) as the following penalized optimization

max
θ ′

s,θ
′′
s

Ex∈Q

[
φ′

s(x; θ ′
s)|Du(x; θ) − f (x)|2

]
+ λEx∈�

[
φ′′

s (x; θ ′′
s)|Bu(x; θ) − g(x)|2

]

− ε−1

⎡
⎢⎣

⎛
⎜⎝ 1

|Q |
∫
Q

φ′
s(x; θ ′

s)dx − 1

⎞
⎟⎠

2

+
⎛
⎝ 1

|�|
∫
�

φ′′
s (x; θ ′′

s)dx − 1

⎞
⎠

2
⎤
⎥⎦ , (3.10)

where ε > 0 is a small penalty constant. When φ′
s(x; θ ′

s) and φ′′
s (x; θ ′′

s) are fixed, we can train the solution network u(x; θ)

by minimizing (3.10), i.e.,

min
θ

max
θ ′

s,θ
′′
s

Ex∈Q

[
φ′

s(x; θ ′
s)|Du(x; θ) − f (x)|2

]

+ λEx∈�

[
φ′′

s (x; θ ′′
s)|Bu(x; θ) − g(x)|2

]

− ε−1

⎡
⎢⎣

⎛
⎜⎝ 1

|Q |
∫
Q

φ′
s(x; θ ′

s)dx − 1

⎞
⎟⎠

2

+
⎛
⎝ 1

|�|
∫
�

φ′′
s (x; θ ′′

s)dx − 1

⎞
⎠

2
⎤
⎥⎦ , (3.11)

which is the final model in the SelectNet method.

Remark 3.1. An alternate way to penalize the selection networks is to divide the residual terms in (3.8) by the norms of the
selection networks. Namely, we solve

min
θ

max
θ ′

s,θ
′′
s

‖φ′
s‖−1

� Ex∈Q

[
φ′

s(x; θ ′
s)|Du(x; θ) − f (x)|2

]
+ λ‖φ′′

s ‖−1
� Ex∈�

[
φ′′

s (x; θ ′′
s)|Bu(x; θ) − g(x)|2

]
. (3.12)

However, in practice, the results of (3.12) are sensitive to the types of norms and hyperparameters; hence (3.12) is more
challenging to obtain good numerical results than the formulation (3.11).

Although the introduction of SelectNet is motivated by self-paced learning in image classification, surprisingly, SelectNet
can also be understood via conventional mathematical analysis. The square root of the non-negative selection networks can
also be understood as the test function in the weak form of conventional PDE solvers. In the SelectNet, we apply the idea
of test functions to both the PDE and the boundary condition, e.g., hoping to identify u(x; θ) ensuring the following two
equalities for all non-negative test functions:(√

φ′
s(x; θ ′

s),Du(x; θ)
)

=
(√

φ′
s(x; θ ′

s), f (x)
)

Q Q

5

Y. Gu, H. Yang and C. Zhou Journal of Computational Physics 441 (2021) 110444
with (·, ·)Q as the inner product of L2(Q) and(√
φ′′

s (x; θ ′′
s),Bu(x; θ)

)
�

=
(√

φ′′
s (x; θ ′′

s), g(x)
)

�

with (·, ·)� as the inner product of L2(�). Conventional methods apply test functions for the PDE only and the test functions
are not necessarily non-negative. In the SelectNet, the integration by part is not applied so as to let the test function play
a role of weighting, while conventional methods use the integration by part to weaken the regularity requirement of the
PDE solution. Only a single test function is used in SelectNet with a maximum requirement to guarantee that the solution
of the min-max problem is the solution of the original problem (see Theorem 4.1 later), while conventional methods use
sufficiently many test functions that can form a set of basis functions in the discrete test function space. The idea of using
test functions in deep learning was also used in [65], where the test function was used in a weak form with integration
by part. The idea of using a min-max optimization problem instead of the minimization problem to solve PDEs has been
studied for many decades, e.g. [21]. Maximizing over all possible test functions can obtain the best test function that
amplifies the residual error the most, which can better help the minimization problem to identify the PDE solution. When
an optimization algorithm is applied to solve the min-max problem, the optimization dynamic consists of a solution dynamic
that converges to the PDE solution and a test dynamic that provide a sequence of test functions to characterize the error of
the numerical solution at each iteration. The training dynamic of the selection network in SelectNet approximates the test
function dynamic, and the training dynamic of the solution network in SelectNet approximate the solution dynamic.

4. Error estimates

In this section, theoretical analysis is presented to show the solution errors of the basic and SelectNet models are
bounded by the loss function (mean square of the residual). Specifically, we will take the elliptic PDE with Neumann
boundary condition as an example. The conclusion can be generalized for other well-posed PDEs by similar argument.
Consider{

−	u + cu = f , in �,
∂u
∂n = g, on ∂�,

(4.1)

where � is an open subset of Rd whose boundary ∂� is C1 smooth; f ∈ L2(�), g ∈ L2(∂�), c(x) ≥ σ > 0 is a given function
in L2(�).

Theorem 4.1. Suppose the problem (4.1) admits a unique solution u∗ in C1(�). Also, suppose the variational optimization problem

min
u∈N J (u) := min

u∈N

∫
�

| − 	u + cu − f |2dx + λ

∫
∂�

|∂u

∂n
− g|2dx, (4.2)

has an admissible set N ⊂ C2(�) containing a feasible solution ub ∈N satisfying

J (ub) < δ, (4.3)

then

‖ub − u∗‖H1(�) ≤ c max(1,σ−1)max(1, λ− 1
2)δ

1
2 , (4.4)

where c > 0 is a constant only depending on d and �. Furthermore, let S ′ be a subset of {φ ∈ C(�) : φ > 0} which contains φ(x) ≡ 1
for all x ∈ �; let S ′′ be a subset of {φ ∈ C(∂�) : φ > 0} which contains φ(x) ≡ 1 for all x ∈ ∂�. Suppose the variational optimization
problem

min
u∈N JS ′,S ′′(u) := min

u∈N max
φ′∈S ′,φ′′∈S ′′

∫
�

φ′| − 	u + cu − f |2dx + λ

∫
∂�

φ′′|∂u

∂n
− g|2dx

− ε−1

⎡
⎢⎣

⎛
⎝ 1

|�|
∫
�

φ′dx − 1

⎞
⎠

2

+
⎛
⎝ 1

|∂�|
∫
∂�

φ′′dx − 1

⎞
⎠

2
⎤
⎥⎦ , (4.5)

has a feasible solution us ∈N satisfying

JS ′,S ′′(us) < δ, (4.6)

then

‖us − u∗‖H1(�) ≤ c max(1,σ−1)max(1, λ− 1
2)δ

1
2 . (4.7)
6

Y. Gu, H. Yang and C. Zhou Journal of Computational Physics 441 (2021) 110444
Proof. Let vb := ub − u∗ . Starting from the identity

−	vb + cvb = −	ub + cub − f , (4.8)

we multiply vb to both sides of (4.8) and integrate over �. Since vb ∈ C1(�), by integration by parts it follows

‖∇vb‖2
L2(�)

+ σ‖vb‖2
L2(�)

≤
∫
�

(−	ub + cub − f)vbdx +
∫
∂�

vb
∂vb

∂n
dx. (4.9)

Hence, by the Cauchy-Schwarz inequality,

min(1,σ)‖vb‖2
H1(�)

≤ ‖ − 	ub + cub − f ‖L2(�) · ‖vb‖L2(�) + ‖vb‖L2(∂�) · ‖∂ub

∂n
− g‖L2(∂�). (4.10)

By the trace theorem, ‖vb‖L2(∂�) ≤ c′‖vb‖H1(�) for some c′ > 0 only depending on d and �. Then we have

min(1,σ)‖vb‖2
H1(�)

≤ ‖vb‖H1(�)

(
‖ − 	ub + cub − f ‖L2(�) + c′‖∂ub

∂n
− g‖L2(∂�)

)

≤ c′′‖vb‖H1(�)

(
‖ − 	ub + cub − f ‖2

L2(�)
+ ‖∂ub

∂n
− g‖2

L2(∂�)

) 1
2

, (4.11)

with c′′ = √
2 max(1, c′). Finally, by the hypothesis (4.3), (4.4) directly follows from (4.11).

Moreover, by taking φ′ ≡ 1, φ′′ ≡ 1 we directly have∫
�

| − 	u + cu − f |2dx + λ

∫
∂�

|∂u

∂n
− g|2dx ≤ JS ′,S ′′(us) < δ. (4.12)

The same estimate for ‖us − u∗‖H1(�) can be obtained by similar argument. �
By using the triangle inequality, we can conclude the solutions of the basic and SelectNet models are equivalent as long

as the loss functions are minimized sufficiently. As an immediate result, we have the following corollary.

Corollary 4.2. Under the hypothesis of Theorem 4.1, we have

‖ub − us‖H1(�) ≤ c max(1,σ−1)max(1, λ− 1
2)δ

1
2 . (4.13)

5. Network implementation

5.1. Network architecture

The proposed framework is independent of the choice of DNNs. Advanced network design may improve the accuracy and
convergence of the proposed framework, which would be interesting for future work.

In this paper, feedforward neural networks will be repeatedly applied. Let φ(x; θ) denote such a network with an input
x and parameters θ , then it is defined recursively as follows:

x0 = x,

xl+1 = σ(W lxl + bl), l = 0,1, · · · , L − 1,

φ(x; θ) = W LxL + bL,

(5.1)

where σ is an application-dependent nonlinear activation function, and θ consists of all the weights and biases {W l, bl}L
l=0

satisfying

W 0 ∈ Rm×d, W L ∈R1×m, bL ∈R,

W l ∈Rm×m, for l = 1, · · · , L − 1,

bl ∈Rm×1, for l = 0, · · · , L − 1.

(5.2)

The number m is called the width of the network and L is called the depth.
For simplicity, we deploy the feedforward neural network with the activation function σ(x) = sin(x) as the solution

network that approximates the solution of the PDE. As for the selection network introduced in Section 3, since it is required
to be bounded in [m0, M0], it can be defined via
7

Y. Gu, H. Yang and C. Zhou Journal of Computational Physics 441 (2021) 110444
φs(x; θ) = (M0 − m0)σs(φ̂(x; θ)) + m0, (5.3)

where σs(x) = 1/(1 + exp(−x)) is the sigmoidal function, and φ̂ is a generic network, e.g. a feedforward neural network
with the ReLU activation σ(x) = max{0, x}.

5.2. Special network for Dirichlet boundary conditions

In the case of homogeneous Dirichlet boundary conditions, it is worth mentioning a special network design that satisfies
the boundary condition automatically as discussed in [36,3].

Let us focus on the boundary value problem to introduce this special network structure. It is straightforward to generalize
this idea to the case of an initial boundary value problem and we omit this discussion. Assume a homogeneous Dirichlet
boundary condition

u(x) = 0, on ∂�, (5.4)

then a solution network automatically satisfying the condition above can be constructed by

u(x; θ) = h(x)û(x; θ), (5.5)

where û is a generic network as in (5.1), and h is a specifically chosen function such as h = 0 on �.
For example, if � is a d-dimensional unit ball, then u(x; θ) can take the form

u(x; θ) = (|x|2 − 1)û(x; θ). (5.6)

For another example, if � is the d-dimensional cube [−1, 1]d , then u(x; θ) can take the form

u(x; θ) =
d∏

i=1

(x2
i − 1)û(x; θ). (5.7)

Since the boundary condition Bu = 0 is always fulfilled, it suffices to solve the min-max problem

min
θ

max
θ ′

s

Ex∈Q

[
φ′

s(x; θ ′
s)|Du(x; θ) − f (x)|2

]
− ε−1

⎛
⎜⎝ 1

|Q |
∫
Q

φ′
s(x; θ ′

s)dx − 1

⎞
⎟⎠

2

(5.8)

to identify the best solution network u(x; θ).

5.3. Derivatives of networks

Note that the evaluation of the optimization problem in (3.11) involves the derivative of the network u(x; θ) in terms of
x. When the activation function of the network is differentiable, the network is differentiable and the derivative in terms
of x can be evaluated efficiently via the back-propagation algorithm. Note that the network we adopt in this paper is not
differentiable. Hence, finite difference method will be utilized to estimate the derivative of networks. For example, for the
elliptic operator Du := ∇ · (a(x)∇u), Du(x; θ) can be estimated by the second-order central difference formula

Du(x; θ) ≈ 1

h2

d∑
i=1

a(x + 1

2
hei)(u(x + hei, θ) − u(x; θ)) − a(x − 1

2
hei)(u(x; θ) − u(x − hei, θ)), (5.9)

up to an error of O (dh2). In the experiments (Section 6), we take h = 10−4 for all examples with d up to 100. Hence
the truncation errors are up to O (10−6), which are overwhelmed by the final errors (at least O (10−4)). This implies the
truncation errors from finite difference can be ignored in practice.

Indeed, one can also use the automatic differentiation in TensorFlow or Pytorch based on the explicit formula of networks
to evaluate the derivatives in the practical implementation, which brings no truncation errors. However, the computational
cost of this approach is high when a second order (or higher) derivative is computed. Hence we choose finite difference
method for derivative computation in this paper.

5.4. Network training

Once networks have been set up, the rest is to train the networks to solve the min-max problem in (3.11). The stochas-
tic gradient descent (SGD) method or its variants (e.g., Adam [34]) is an efficient tool to solve this problem numerically.
Although the convergence of SGD for the min-max problem is still an active research topic [52,10,59], empirical success
shows that SGD can provide a good approximate solution.
8

Y. Gu, H. Yang and C. Zhou Journal of Computational Physics 441 (2021) 110444
Algorithm 1 The Least Squares Model with SelectNet.
Require: the PDE (2.4)
Ensure: the parameters θ in the solution network u(x; θ)

Set parameters n, n1, n2 for iterations and parameters N1, N2 for sample sizes
Initialize u(x; θ0,0) and φs(x; θ0,0

s)

for k = 1, · · · , n do
Generate uniformly distributed sampling points
{x1

i }N1
i=1 ⊂ Q and {x2

i }N2
i=1 ⊂ �

for j = 1, · · · , n1 do
Update θk−1, j

s ← θ
k−1, j−1
s + τ

(k)
s ∇θs J (θk−1, j−1

s , θk−1,0)

end for
θ

k,0
s ← θ

k−1,n1
s

for j = 1, · · · , n2 do
Update θk−1, j ← θk−1, j−1 − τ (k)∇θ J (θk,0

s , θk−1, j−1)

end for
θk,0 ← θk−1,n2

if Stopping criteria is satisfied then
Return θ = θk,0

end if
end for

Before completing the algorithm description of SelectNet, let us introduce the key setup of SGD and summarize it in
Algorithm 1 below. In each training iteration, we first set uniformly distributed training points {x1

i }N1
i=1 ⊂ Q and {x2

i }N2
i=1 ⊂ �,

and define the empirical loss of these training points as

J (θ, θs) = 1

N1

N1∑
i=1

φ′
s(x1

i ; θ ′
s)|Du(x1

i , θ) − f (x1
i)|2

+ λ

N2

N2∑
i=1

φ′′
s (x2

i ; θ ′′
s)|Bu(x2

i , θ) − g(x2
i)|2

− ε−1

⎡
⎣(

1

N1

N1∑
i=1

φ′
s(x1

i ; θ ′
s) − 1

)2

+
(

1

N2

N2∑
i=1

φ′′
s (x2

i ; θ ′′
s) − 1

)2⎤⎦ , (5.10)

where θs := [θ ′
s, θ ′′

s]. Next, θs can be updated by the gradient ascent via

θs ← θs + τs∇θs J , (5.11)

and θ can be updated by the gradient descent via

θ ← θ − τ∇θ J , (5.12)

with step sizes τs and τ . Note that training points are randomly renewed in each iteration. In fact, for the same set of
training points in each iteration, the updates (5.11) and (5.12) can be performed n1 and n2 times, respectively.

6. Numerical experiments

In this section, the proposed SelectNet model is tested on several PDE examples, including elliptic/parabolic and lin-
ear/nonlinear high-dimensional problems. Other network-based methods are also implemented for comparison. For all
methods, we choose the feedforward architecture with activation σ(x) = max(x3, 0) for the solution network. Addition-
ally, for SelectNet, we choose feedforward architecture with ReLU activation for the selection network. AdamGrad [12] is
employed to solve the optimization problems, with learning rates

τ
(k)
s = 10−4, (6.1)

for the selection network, and

τ (k) = 10−3−3 j/1000, if n(j) < k ≤ n(j+1), ∀ j = 0, · · · ,1000, (6.2)

for the solution network, where 0 = n(0) < · · · < n(1000) = n are equidistant segments of total iterations. Other parameters
used in the model and algorithm are listed in Table 6.1. Unless otherwise specified, in all examples, we set N1 = 10000,
N2 = 10000, n = 20000, n1 = 1, λ = 1, m = 100, L = 3 for all methods and set n2 = 1, ε = 0.001, ms = 20, Ls = 3, m0 = 0.8,
M0 = 5 especially for SelectNet.
9

Y. Gu, H. Yang and C. Zhou Journal of Computational Physics 441 (2021) 110444
Table 6.1
Parameters in the model and algorithm.

d the dimension of the problem
m the width of each layer in the solution network
ms the width of each layer in the selection network
L the depth of the solution network
Ls the depth of the selection network
M0 the upper bound of the selection network
m0 the lower bound of the selection network
n number of iterations in the optimization
n1 number of updates of the selection network in each iteration
n2 number of updates of the solution network in each iteration
N1 number of training points inside the domain in each iteration
N2 number of training points on the domain boundary in each iteration
ε penalty parameter to uniform the selection network
λ summation weight of the boundary least squares

We take the (relative) 2 error at uniformly distributed testing points {xi} ⊂ Q̃ as the metric to evaluate the accuracy,
which is formulated by

e2(θ) :=
⎛
⎜⎝

∑
i
|u(xi; θ) − u(xi)|2∑

i
|u(xi)|2

⎞
⎟⎠

1
2

. (6.3)

Here Q̃ ⊂ Q is the domain for error evaluation. In all examples, we choose 10000 testing points for error evaluation.

6.1. Comparative experiment

In the first experiment, we compare the proposed SelectNet model with other network-based methods on the following
2-D Poisson equation,

−	u = 1, in � := (−1,1) × (−1,1),

u = 0, on ∂�,
(6.4)

with a solution expressed by the series

u(x1, x2) = − 64

π4

∞∑
n,m=1

n,m odd

(−1)
n+m

2
cos(nπx1

2)cos(mπx2
2)

nm(n2 + m2)
. (6.5)

As a classic testing example for PDE methods, the problem (6.4) is well-known for the low-regularity of its solution at
the four corners of �. In this experiment, both the interior training points and testing points are chosen uniformly in the
domain, and the boundary training points are chosen uniformly on the boundary. Since the numerical results are influenced
by the randomness of the network initialization and the stochastic training process, we implement each method for 50
times with different seeds and compute the mean and standard deviation of the final errors.

6.1.1. Comparison with recent methods
We implement the basic least squares model, SelectNet model, and recently raised methods: deep Ritz method (DRM)

[19] and weak adversarial networks (WAN) [65] under the same setting, and compare their convergence speed. All methods
are implemented for 600 seconds, with learning rates given in (6.2) for the first 10000 iterations and 10−6 for the sub-
sequent iterations. The means and standard deviations of the final 2 errors of 50 trials are listed in Table 6.2. For each
method. We select 10 of the 50 trials to present their error curves with respect to the computing time in Fig. 6.1. It is
observed in the first 50 seconds SelectNet has the fastest error decay, and in the end, SelectNet obtains the smallest errors.
We also note that for each method, the error deviations are much smaller than the error means, showing the numerical
stability with respect to the stochasticity of algorithms.

Across different trials, the selection networks of the SelectNet model evolve in a nearly identical manner. From all trials,
we take one to show the surfaces of the selection network at the initial stage and the 2000th, 5000th, 10000th iterations
(see Fig. 6.2). We can clearly find that high peaks appear at the four corners over time where the solution is less regular,
while other region preserves to be low and constant. This distribution will improve the convergence at the corners that are
“difficult” to deal with.
10

Y. Gu, H. Yang and C. Zhou Journal of Computational Physics 441 (2021) 110444
Table 6.2
Means and standard deviations of the 2 errors obtained within 600 seconds by various methods in
the comparative example (totally 50 trials for each method).

Basic SelectNet DRM WAN

Mean of Errors μ 7.588 × 10−3 3.288 × 10−4 8.681 × 10−4 2.177 × 10−3

Standard Deviation σ 1.080 × 10−3 7.821 × 10−5 1.072 × 10−4 8.002 × 10−4

Coefficient of Variation σ/μ 14.2% 23.8% 12.4% 36.8%

Fig. 6.1. 2 errors v.s. computing time in the comparative example (Red: SelectNet model; Blue: the basic model; green: DRM; yellow: WAN. 10 selected
curves for each method). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 6.2. The evolution of the selection network over time in the comparative example.

6.1.2. Comparison with binary weighting
To verify that SelectNet is advantageous over other weighting strategies, we also implement the binary weighting method.

Namely, in the basic least squares method, we select p (0 < p < 1) training points having larger residuals to be weighted
with wL > 1, and let the other points be weighted with wS < 1. Specifically, we solve the problem (6.4) by

min
θ

1

N1

⎛
⎝ ∑

x∈L1

wL| − 	u(x; θ) − 1|2 +
∑
x∈S1

wS| − 	u(x; θ) − 1|2
⎞
⎠

+ λ

N2

⎛
⎝ ∑

x∈L2

wL|u(x; θ)|2 +
∑
x∈S2

wS|u(x; θ)|2
⎞
⎠ , (6.6)

where {L1, S1} is a partition of {x1
i }N1

i=1 satisfying |L1| = pN1, |S1| = (1 − p)N1, | − 	u(x′; θ) − 1| ≥ | − 	u(x′′; θ) − 1| for
any x′ ∈ L1 and x′′ ∈ S1; {L2, S2} is a partition of {x2

i }N2
i=1 satisfying |L2| = pN2, |S2| = (1 − p)N2, |u(x′; θ)| ≥ |u(x′′; θ)| for

any x′ ∈L2 and x′′ ∈ S2. The binary weights are chosen subject to the following normalization condition

wL p + wS(1 − p) = 1, wL p + wS(1 − p) = 1. (6.7)

As with the preceding tests, we implement the weighting model (6.6) with various combinations of parameters for 600
seconds. The means and deviations of the final 2 errors are listed in Table 6.3. It shows the best combination obtains the
mean error 7.375 × 10−3, which is slightly better than the original basic model and much worse than the SelectNet model.

6.2. High-dimensional examples

In the second experiment, we will implement the basic and SelectNet models in a series of high-dimensional examples
(d ≥ 10) to reflect the advantage of using SelectNet. Note from the preceding comparative experiment that SelectNet can
11

Y. Gu, H. Yang and C. Zhou Journal of Computational Physics 441 (2021) 110444
Table 6.3
Means and standard deviations of the 2 errors obtained within 600 seconds by binary
weighting in the comparative example (totally 50 trials for each combination).

p = 20%

wL/wS 2 4 8

Mean of Errors μ 8.104 × 10−3 8.649 × 10−3 9.260 × 10−3

Standard Deviation σ 8.384 × 10−4 1.131 × 10−3 1.205 × 10−3

Coefficient of Variation σ/μ 10.3% 13.1% 13.0%

p = 50%

wL/wS 2 4 8

Mean of Errors μ 7.395 × 10−3 7.612 × 10−3 7.506 × 10−3

Standard Deviation σ 1.080 × 10−3 1.168 × 10−3 1.113 × 10−3

Coefficient of Variation σ/μ 14.6% 15.3% 14.8%

p = 80%

wL/wS 2 4 8

Mean of Errors μ 7.426 × 10−3 7.375 × 10−3 7.512 × 10−3

Standard Deviation σ 9.502 × 10−4 1.023 × 10−3 1.077 × 10−3

Coefficient of Variation σ/μ 12.8% 13.9% 14.3%

obtain much smaller error means than the basic model, which overwhelms the error deviations. Therefore, considering the
long time spent in high-dimensional problems, we only implement both models for once in each case to present the results
in the paper.

Since in high-dimensional cases, most of the random points following a uniform distribution are near the boundary, we
take an annularly uniform strategy instead of uniform sampling. Specifically, for a high-dimensional unit circle, we divide
it into Na annuli {k/Na < |x| < (k + 1)/Na}Na−1

k=0 and generates N1/Na samples uniformly in each annulus. In the following
experiments, we choose Na = 10. This sampling strategy is applied in generating interior training points and testing points.
For generating boundary training points, we still use uniform sampling.

6.2.1. Elliptic equations with low-regularity solutions
First, let us consider the nonlinear elliptic equation inside a bounded domain

−∇ · (a(x)∇u) + |∇u|2 = f (x), in � := {x : |x| < 1},
u = g(x), on ∂�,

(6.8)

with a(x) = 1 + 1
2 |x|2. In this case, we specify the exact solution by

u(x) = sin(
π

2
(1 − |x|)2.5), (6.9)

whose first derivative is singular at the origin and the third derivative is singular on the boundary. Note the problem is
nonlinear if μ �= 0. We solve the high-dimensional nonlinear problem for d = 10, 20 and 100. The errors obtained by the
basic and SelectNet models with 20000 iterations are listed in Table 6.4. Since the basic model costs less time for one
iteration, we also list the errors obtained by SelectNet with the same computing time as the basic model for comparison.
The curves of error decay versus iterations are shown in Fig. 6.3. From these results, it is observed both models are effective
on the nonlinear elliptic problem of all dimensions, but SelectNet has a clearly better performance than the basic model: its
accuracy is one-digit better than the basic model. Besides, we present in Fig. 6.4 the following surfaces at (x1, x2)-slice

• the numerical solution: u(x1, x2, 0, · · · , 0; θ)

• the modulus of the numerical residual error: |Du(x1, x2, 0, · · · , 0; θ) − f (x1, x2, 0, · · · , 0)|
• the selection network: φ′

s(x1, x2, 0, · · · , 0; θ ′
s)

for the 20-dimensional case. It shows that the residual error accumulates near the origin due to its low regularity. On the
other hand, the selection network attains its peak at the origin, implying that training points are highly weighted near
the origin where the residual error is mainly distributed. Note that the selection network is not supported locally near the
low-regularity point, which means that the selection network will not make the training of the solution network focus on
the low-regularity point only.
12

Y. Gu, H. Yang and C. Zhou Journal of Computational Physics 441 (2021) 110444
Table 6.4
2 errors obtained by various models in the nonlinear elliptic example. (“SelectNet”
and “Basic” denote the final errors obtained by SelectNet and basic models with
20000 iterations; “SelectNet∗” denotes the error obtained by SelectNet model with
the same computing time as 20000 iterations of basic model, the same below).

Dimension SelectNet SelectNet∗ Basic

d = 10 7.944 × 10−4 8.089 × 10−4 3.193 × 10−3

d = 20 9.584 × 10−4 1.241 × 10−3 1.707 × 10−2

d = 100 9.257 × 10−3 1.004 × 10−2 1.862 × 10−1

Fig. 6.3. 2 errors v.s. iterations in the nonlinear elliptic example (Red: SelectNet model; Blue: the basic model).

Fig. 6.4. The (x1, x2)-surfaces of the numerical solution, the modulus of residual errors and selection network by SelectNet (d=20) in the nonlinear elliptic
example.

6.2.2. Linear parabolic equations
In this example, SelectNet is tested on the following initial boundary value problem of the linear parabolic equation

∂t u(x, t) − ∇x · (a(x)∇xu(x, t)) = f (x, t), in Q := � × (0,1),

u(x, t) = g(x), on ∂� × (0,1),

u(x,0) = h(x), in �,

(6.10)

where a(x) = 1 + 1
2 |x| and � := {x : |x| < 1}. The exact solution is set by

u(x, t) = exp(|x|√1 − t). (6.11)

Note u is at most C0 smooth at t = 1 and |x| = 0. In the SelectNet model, time-discretization schemes are not utilized.
Instead, we regard t as an extra spatial variable of the problem. Hence the problem domain � × (0, 1) is an analog of a
hypercylinder, and the “boundary” value is specified in the bottom � × {t = 0} and the side ∂� × (0, 1). This example is
tested for d = 10, 20 and 100, by evaluating the relative 2 error in � × (0, 1). The errors of the basic and SelectNet models
are listed in Table 6.5. It is clearly shown SelectNet still obtains smaller errors than the basic model with the same number
of iterations or computing time. In Fig. 6.5 the curves of error decay are presented, and in Fig. 6.6 the (t, x1)-surfaces of
the numerical solution, the modulus of the residual errors and selection network for d = 20 are displayed, from that we can
observe the residual error is mainly distributed near the singular point x = 0 and the terminal slice t = 1. Accordingly, the
selection network takes its maximum in this region.
13

Y. Gu, H. Yang and C. Zhou Journal of Computational Physics 441 (2021) 110444
Table 6.5
2 errors obtained by various models in the linear parabolic example.

Dimension SelectNet SelectNet∗ Basic

d = 10 1.490 × 10−2 1.502 × 10−2 3.531 × 10−2

d = 20 2.990 × 10−2 3.000 × 10−2 8.748 × 10−2

d = 100 6.302 × 10−2 6.268 × 10−2 1.357 × 10−1

Fig. 6.5. 2 errors v.s. iterations in the linear parabolic example (Red: SelectNet model; Blue: the basic model).

Fig. 6.6. The (t, x1)-surfaces of the numerical solution, the modulus of residual errors and selection network by SelectNet (d=20) in the linear parabolic
example.

6.2.3. Allen-Cahn equation
In this example, we test SelectNet model on the following 100-dimensional Allen-Cahn equation

∂t u(x, t) − 	xu(x, t) − u(x, t) + u3(x, t) = f (x, t), in Q := � × (0,1),

u(x, t) = g(x), on ∂� × (0,1),

u(x,0) = h(x), in �,

(6.12)

where a(x) = 1 + 1
2 |x| and � := {x : |x| < 1}. Note the Allen-Cahn equation is a nonlinear parabolic equation. The exact

solution is set as

u(x, t) = e−t sin(
π

2
(1 − |x|)2.5). (6.13)

The errors obtained by SelectNet model and the basic model with 20000 iterations are 6.358 × 10−3 and 3.347 × 10−2,
respectively. And the SelectNet error obtained with the same computing time as the basic model is 6.218 × 10−3. The error
curves versus iterations are shown in Fig. 6.7. It can be seen in the figure the error curve of the SelectNet decays faster to
lower levels than the basic model. Moreover, the (t, x1)-surface of the numerical solution, the modulus of residual errors
and selection network are shown in Fig. 6.8, from that we can observe the selection network takes its maximum near the
singular point x = 0 and the initial slice t = 0, where the highest residual error is located.

6.2.4. Hyperbolic equations
In the last example, we test SelectNet by solving the initial boundary value problem of the hyperbolic (wave) equation,

which is given by
14

Y. Gu, H. Yang and C. Zhou Journal of Computational Physics 441 (2021) 110444
Fig. 6.7. 2 errors v.s. iterations in the Allen-Cahn example (Red: SelectNet model; Blue: the basic model).

Fig. 6.8. The (t, x1)-surfaces of the numerical solution, the modulus of residual errors and selection network by SelectNet in the Allen-Cahn example.

Table 6.6
Final 2 errors obtained by various models in the hyperbolic example.

Dimension SelectNet SelectNet∗ Basic

d = 10 1.671 × 10−2 1.701 × 10−2 5.200 × 10−2

d = 20 3.281 × 10−2 3.292 × 10−2 9.665 × 10−2

d = 100 6.319 × 10−2 6.351 × 10−2 3.089 × 10−1

∂2u(x, t)

∂t2
− 	xu(x, t) = f (x, t), in � × (0,1),

u(x, t) = g0(x, t), on ∂� × (0,1),

u(x,0) = h0(x),
∂u(x,0)

∂t
= h1(x) in �,

(6.14)

with � := {x : |x| < 1} and exact solution is set by

u(x, t) =
(

exp(t2) − 1
)

sin(
π

2
(1 − |x|)2.5). (6.15)

Same as in preceding examples, we solve the problem of d = 10, 20 and 100 and compute the relative 2 errors of the basic
and SelectNet models. The obtained errors are listed in Table 6.6, which demonstrates the SelectNet still converges faster
than the basic model (especially when d is higher), obtaining smaller errors. Also, we display the curves of error decay in
Fig. 6.9, and the (t, x1)-surfaces of the numerical results when d = 20 in Fig. 6.10. The results in the examples of parabolic
and hyperbolic equations imply our proposed model works successfully for time-dependent problems.
15

Y. Gu, H. Yang and C. Zhou Journal of Computational Physics 441 (2021) 110444
Fig. 6.9. 2 errors v.s. iterations in the hyperbolic example (Red: SelectNet model; Blue: the basic model).

Fig. 6.10. The (t, x1)-surfaces of the numerical solution, the modulus of residual errors and selection network by SelectNet (d=20) in the hyperbolic example.

7. Conclusion

In this work, we improve the network-based least squares models on generic PDEs by introducing a selection network
for selected sampling in the optimization process. The objective is to place higher weights on the sampling points having
larger point-wise residual errors, and correspondingly we propose the SelectNet model that is a min-max optimization. In
the implementation, both the solution and selection functions are approximated by feedforward neural networks, which
are trained alternatively in the algorithm. The proposed SelectNet framework can solve high-dimensional PDEs that are
intractable by traditional PDE solvers.

In the numerical examples, it is demonstrated the proposed SelectNet model works effectively for elliptic, parabolic, and
hyperbolic equations, even if in the case of nonlinear equations. Furthermore, numerical results show that the proposed
model outperforms the basic least squares model. In the problems with low-regularity solutions, SelectNet will focus on the
region with larger errors automatically, finally improving the speed of convergence.

In this paper, we apply neural networks with piecewise polynomial functions as activation functions. If the floor, ReLU,
Sign, and exponential functions are used as activation functions, [56,57] showed that deep network approximation has no
curse of dimensionality in the approximation error for Hölder continuous functions. But unfortunately, efficient numerical
algorithms for these networks are still not available yet. It is interesting to explore the application of these networks to
approximate the solutions of high-dimensional PDEs in the weak sense as future work.

CRediT authorship contribution statement

Yiqi Gu: Investigation, Software, Visualization, Writing – original draft. Haizhao Yang: Conceptualization, Investigation,
Methodology, Writing – review & editing. Chao Zhou: Investigation, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
16

Y. Gu, H. Yang and C. Zhou Journal of Computational Physics 441 (2021) 110444
Acknowledgements

Y. G. was partially supported by the Ministry of Education in Singapore under the grant MOE2018-T2-2-147 and MOE
AcRF R-146-000-271-112. H. Y. was partially supported by the US National Science Foundation under award DMS-1945029.
C. Z. was partially supported by the Ministry of Education in Singapore under the grant MOE AcRF R-146-000-271-112 and
by NSFC under the grant award 11871364.

References

[1] A.R. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. Inf. Theory 39 (3) (May 1993) 930–945.
[2] Christian Beck, Sebastian Becker, Patrick Cheridito, Arnulf Jentzen, Ariel Neufeld, Deep splitting method for parabolic PDEs, e-prints, arXiv:1907.03452,

Jul 2019.
[3] Jens Berg, Kaj Nyström, A unified deep artificial neural network approach to partial differential equations in complex geometries, Neurocomputing 317

(2018) 28–41.
[4] J. Braun, M. Griebel, On a constructive proof of Kolmogorov’s superposition theorem, preprint, SFB 611, 2007.
[5] Jian-Feng Cai, Dong Li, Jiaze Sun, Ke Wang, Enhanced expressive power and fast training of neural networks by random projections, e-prints, arXiv:

1811.09054, Nov 2018.
[6] Wei Cai, Zhi-Qin John Xu, Multi-scale deep neural networks for solving high dimensional PDEs, e-prints, arXiv:1910 .11710, Oct 2019.
[7] Charles K. Chui, Shao-Bo Lin, Ding-Xuan Zhou, Construction of neural networks for realization of localized deep learning, Front. Appl. Math. Stat. 4 (14)

(2018).
[8] Dominik Csiba, Peter Richtárik, Importance sampling for minibatches, J. Mach. Learn. Res. 19 (1) (January 2018) 962–982.
[9] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Syst. 2 (4) (Feb 1989) 303–314.

[10] Constantinos Daskalakis, Ioannis Panageas, The limit points of (optimistic) gradient descent in min-max optimization, in: Proceedings of the 32nd
International Conference on Neural Information Processing Systems, NIPS’18, USA, Curran Associates Inc., 2018, pp. 9256–9266.

[11] M.W.M.G. Dissanayake, N. Phan-Thien, Neural-network-based approximations for solving partial differential equations, Commun. Numer. Methods Eng.
10 (3) (1994) 195–201.

[12] John Duchi, Elad Hazan, Yoram Singer, Adaptive subgradient methods for online learning and stochastic optimization, J. Mach. Learn. Res. 12 (July
2011) 2121–2159.

[13] E. Weinan, Jiequn Han, Arnulf Jentzen, Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and back-
ward stochastic differential equations, Commun. Math. Stat. 5 (4) (Dec 2017) 349–380.

[14] E. Weinan, Jiequn Han, Linfeng Zhang, Integrating machine learning with physics-based modeling, e-prints, arXiv:2006 .02619, 2020.
[15] E. Weinan, Chao Ma, Qingcan Wang, A priori estimates of the population risk for residual networks, arXiv:1903 .02154 [abs], 2019.
[16] E. Weinan, Chao Ma, Lei Wu, A priori estimates of the population risk for two-layer neural networks, Commun. Math. Sci. 17 (5) (2019) 1407–1425.
[17] E. Weinan, Chao Ma, Lei Wu, Barron spaces and the compositional function spaces for neural network models, Constr. Approx. (2020).
[18] E. Weinan, Qingcan Wang, Exponential convergence of the deep neural network approximation for analytic functions, Sci. China Math. 61 (2018)

1733–1740.
[19] E. Weinan, Bing Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (2018)

1–12.
[20] Matthias Ehrhardt, Ronald E. Mickens, A fast, stable and accurate numerical method for the Black–Scholes equation of American options, Int. J. Theor.

Appl. Finance 11 (05) (2008) 471–501.
[21] K.O. Friedrichs, Symmetric positive linear differential equations, Commun. Pure Appl. Math. 11 (3) (1958) 333–418.
[22] Abhijeet Gaikwad, Ioane Muni Toke, Gpu based sparse grid technique for solving multidimensional options pricing PDEs, in: Proceedings of the 2nd

Workshop on High Performance Computational Finance, WHPCF ’09, New York, NY, USA, ACM, 2009, 6.
[23] D. Gobovic, M.E. Zaghloul, Analog cellular neural network with application to partial differential equations with variable mesh-size, in: Proceedings of

IEEE International Symposium on Circuits and Systems, ISCAS ’94, vol. 6, May 1994, pp. 359–362.
[24] Namig J. Guliyev, Vugar E. Ismailov, Approximation capability of two hidden layer feedforward neural networks with fixed weights, Neurocomputing

316 (2018) 262–269.
[25] Jiequn Han, Arnulf Jentzen, E. Weinan, Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. 115 (34) (2018)

8505–8510.
[26] Kurt Hornik, Maxwell Stinchcombe, Halbert White, Multilayer feedforward networks are universal approximators, Neural Netw. 2 (5) (1989) 359–366.
[27] M. Hutzenthaler, A. Jentzen, Th. Kruse, T.A. Nguyen, A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical

approximation of semilinear heat equations, Technical report, 2020.
[28] Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse, Tuan Anh Nguyen, A proof that rectified deep neural networks overcome the curse of dimension-

ality in the numerical approximation of semilinear heat equations, SN Partial Differ. Equ. Appl. 1 (10) (2020).
[29] Martin Hutzenthaler, Arnulf Jentzen, Philippe von Wurstemberger, Overcoming the curse of dimensionality in the approximative pricing of financial

derivatives with default risks, Electron. J. Probab. 25 (2020), 73 pp.
[30] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, Li Fei-Fei, Mentornet: learning data-driven curriculum for very deep neural networks on corrupted

labels, in: Proceedings of the 35th International Conference on Machine Learning, vol. 80, 2018, pp. 2304–2313.
[31] Angelos Katharopoulos, François Fleuret, Not all samples are created equal: deep learning with importance sampling, in: Proceedings of Machine

Learning Research (PMLR), vol. 80, Stockholmsmässan, Stockholm, Sweden, Jul 2018, pp. 2525–2534.
[32] T. Kaufmann, C. Engström, C. Fumeaux, Residual-based adaptive refinement for meshless eigenvalue solvers, in: 2010 International Conference on

Electromagnetics in Advanced Applications, 2010, pp. 244–247.
[33] Yuehaw Khoo, Jianfeng Lu, Lexing Ying, Solving parametric PDE problems with artificial neural networks, Eur. J. Appl. Math. (2020) 1–15.
[34] Diederik P. Kingma, Jimmy Ba, Adam: a method for stochastic optimization, in: Yoshua Bengio, Yann LeCun (Eds.), 3rd International Conference on

Learning Representations, Conference Track Proceedings, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, 2015.
[35] M.P. Kumar, Benjamin Packer, Daphne Koller, Self-paced learning for latent variable models, in: J.D. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R.S. Zemel,

A. Culotta (Eds.), Advances in Neural Information Processing Systems, vol. 23, Curran Associates, Inc., 2010, pp. 1189–1197.
[36] I.E. Lagaris, A. Likas, D.I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw. 9 (5) (Sep.

1998) 987–1000.
[37] I.E. Lagaris, A.C. Likas, D.G. Papageorgiou, Neural-network methods for boundary value problems with irregular boundaries, IEEE Trans. Neural Netw.

11 (5) (Sep. 2000) 1041–1049.
[38] Hyuk Lee, In Seok Kang, Neural algorithm for solving differential equations, J. Comput. Phys. 91 (1) (1990) 110–131.
17

http://refhub.elsevier.com/S0021-9991(21)00339-9/bibCD0452057B354FD4BBDBEB05D3E2ADE6s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibE7CCB8D3AC7FED78490C45ED453570FAs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibE7CCB8D3AC7FED78490C45ED453570FAs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib79EFB59B3148A998B0788CFE770D57CAs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib79EFB59B3148A998B0788CFE770D57CAs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib65EE017AAC81F06030B1FDF9C9EA73F2s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib65EE017AAC81F06030B1FDF9C9EA73F2s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibB403711E145143BE36ECE49AE812450As1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib2AAA040B26E26783B81FA5E539F4F448s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib2AAA040B26E26783B81FA5E539F4F448s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib9F2CCB042EC60985FE3CEDF5138BBB04s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib6E22BE1723DF8EBB3D0E65E120FF8B92s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibBB55C749D6AE5498B440B00AAE34EBA3s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibBB55C749D6AE5498B440B00AAE34EBA3s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibB4C40BDF6099CDE07B3B0BEE40E444DEs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibB4C40BDF6099CDE07B3B0BEE40E444DEs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib793DAC3E50855237706C6AC8A51192ADs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib793DAC3E50855237706C6AC8A51192ADs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib2D89B4EF20DFF24CC384AAF931CEE875s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib2D89B4EF20DFF24CC384AAF931CEE875s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib7118F62E491103A0EB7D4120D6817089s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib599AF2E5D699355E236725B8BDBF5EF3s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib7A527792A59A78DF857C4D112ADF1B40s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib12E75B3353528DF6704ECBEB2B59B26Bs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibCB0D4AB8CF161CF34B7379F4AB41448Bs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibCB0D4AB8CF161CF34B7379F4AB41448Bs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibD1CE613D5CB4EE28B4BA42FAA17EBF13s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibD1CE613D5CB4EE28B4BA42FAA17EBF13s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibD8F8ED70D2D88AB17BA61C7CFF395A12s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibD8F8ED70D2D88AB17BA61C7CFF395A12s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibD680DBFC2E6D0F23AE2B80426C477C3Fs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib05FA7E1E962A8905CE1EEAA4E3BF356Cs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib05FA7E1E962A8905CE1EEAA4E3BF356Cs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib61BB0FF07C28A5DC60876274A03F1348s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib61BB0FF07C28A5DC60876274A03F1348s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibA7B308DD989E899730B0833E7AB06A20s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibA7B308DD989E899730B0833E7AB06A20s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibC67D4A5E237287213B8F979EE8AF44D4s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibC67D4A5E237287213B8F979EE8AF44D4s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibFB5A81DAFABBF2638932D17105CEB7BCs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib0952E2D96647BBC63413F790B76FB966s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib0952E2D96647BBC63413F790B76FB966s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibE9922AE03B9DDC7500C80CD373AA0131s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibE9922AE03B9DDC7500C80CD373AA0131s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib9D8E918BCD5981FED7BA98DD3DDCA772s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib9D8E918BCD5981FED7BA98DD3DDCA772s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibC2B9FD68331E60C3860477916353A379s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibC2B9FD68331E60C3860477916353A379s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib40F2F358C70D553E09FC1BA937F2766Fs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib40F2F358C70D553E09FC1BA937F2766Fs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib3F9B6BB2044AD2AD183DCEEDBFE7DF8Ds1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib3F9B6BB2044AD2AD183DCEEDBFE7DF8Ds1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib381D8C5FF170C5221A7E71561F2EE921s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib505658FDB4348FEE35C8C28C0B737DFCs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib505658FDB4348FEE35C8C28C0B737DFCs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibBCE10B06E39B490E64F45290718F59D8s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibBCE10B06E39B490E64F45290718F59D8s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib95F7610D68E9F0B4C9DE7BDD507AFFE9s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib95F7610D68E9F0B4C9DE7BDD507AFFE9s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib30CF0CE821B8DC287137B009F23847A6s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib30CF0CE821B8DC287137B009F23847A6s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibE71F2E83616C3A1EBEB6AEACDAA561F0s1

Y. Gu, H. Yang and C. Zhou Journal of Computational Physics 441 (2021) 110444
[39] T.T. Lee, F.Y. Wang, R.B. Newell, Robust model-order reduction of complex biological processes, J. Process Control 12 (7) (2002) 807–821.
[40] Ke Li, Kejun Tang, Tianfan Wu, Qifeng Liao, D3M: a deep domain decomposition method for partial differential equations, IEEE Access 8 (2020)

5283–5294.
[41] Qianxiao Li, Bo Lin, Weiqing Ren, Computing committor functions for the study of rare events using deep learning, J. Chem. Phys. 151 (5) (2019)

054112.
[42] Shiyu Liang, R. Srikant, Why deep neural networks for function approximation?, in: ICLR, 2017.
[43] Yunru Liu, Tingran Gao, Haizhao Yang, SelectNet: learning to sample from the wild for imbalanced data training, in: Proceedings of the First Mathe-

matical and Scientific Machine Learning Conference, 2020, arXiv:1905 .09872.
[44] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, Liwei Wang, The expressive power of neural networks: a view from the width, in: I. Guyon,

U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information Processing Systems, vol. 30, Curran
Associates, Inc., 2017, pp. 6231–6239.

[45] Vitaly Maiorov, Allan Pinkus, Lower bounds for approximation by MLP neural networks, Neurocomputing 25 (1) (1999) 81–91.
[46] A. Malek, R. Shekari Bvolumeokhti, Numerical solution for high order differential equations using a hybrid neural network-optimization method, Appl.

Math. Comput. 183 (1) (2006) 260–271.
[47] Hadrien Montanelli, Qiang Du, New error bounds for deep ReLU networks using sparse grids, SIAM J. Math. Data Sci. 1 (1) (Jan 2019).
[48] Hadrien Montanelli, Haizhao Yang, Error bounds for deep ReLU networks using the Kolmogorov–Arnold superposition theorem, Neural Netw. 129

(2020) 1–6.
[49] Hadrien Montanelli, Haizhao Yang, Qiang Du, Deep ReLU networks overcome the curse of dimensionality for bandlimited functions, J. Comput. Math.

(2021), in press.
[50] Tenavi Nakamura-Zimmerer, Qi Gong, Wei Kang, Adaptive deep learning for high dimensional Hamilton-Jacobi-Bellman equations, e-prints, arXiv:

1907.05317, 2019.
[51] Philipp Petersen, Felix Voigtlaender, Optimal approximation of piecewise smooth functions using deep ReLU neural networks, Neural Netw. 108 (2018)

296–330.
[52] Hassan Rafique, Mingrui Liu, Qihang Lin, Tianbao Yang, Non-convex min-max optimization: provable algorithms and applications in machine learning,

arXiv:1810 .02060 [abs], 2018.
[53] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[54] Zuowei Shen, Haizhao Yang, Shijun Zhang, Deep network approximation characterized by number of neurons, e-prints, arXiv:1906 .05497, Jun 2019.
[55] Zuowei Shen, Haizhao Yang, Shijun Zhang, Nonlinear approximation via compositions, Neural Netw. 119 (2019) 74–84.
[56] Zuowei Shen, Haizhao Yang, Shijun Zhang, Deep network with approximation error being reciprocal of width to power of square root of depth,

arXiv:2006 .12231, 2020.
[57] Zuowei Shen, Haizhao Yang, Shijun Zhang, Neural network approximation: three hidden layers are enough, 2020.
[58] Justin Sirignano, Konstantinos Spiliopoulos, Dgm: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018)

1339–1364.
[59] Christopher Srinivasa, Inmar Givoni, Siamak Ravanbakhsh, Brendan J. Frey, Min-max propagation, in: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R.

Fergus, S. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information Processing Systems, vol. 30, Curran Associates, Inc., 2017, pp. 5565–5573.
[60] Taiji Suzuki, Adaptivity of deep reLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality, in:

International Conference on Learning Representations, 2019.
[61] David J. Wales, Jonathan P.K. Doye, Stationary points and dynamics in high-dimensional systems, J. Chem. Phys. 119 (23) (2003) 12409–12416.
[62] Dmitry Yarotsky, Error bounds for approximations with deep ReLU networks, Neural Netw. 94 (2017) 103–114.
[63] Dmitry Yarotsky, Optimal approximation of continuous functions by very deep ReLU networks, in: Sébastien Bubeck, Vianney Perchet, Philippe Rigollet

(Eds.), Proceedings of the 31st Conference on Learning Theory, 06–09 Jul 2018, in: Proceedings of Machine Learning Research (PMLR), vol. 75, 2018,
pp. 639–649.

[64] H. Yserentant, Sparse grid spaces for the numerical solution of the electronic Schrödinger equation, Numer. Math. 101 (2) (Aug 2005) 381–389.
[65] Yaohua Zang, Gang Bao, Xiaojing Ye, Haomin Zhou, Weak adversarial networks for high-dimensional partial differential equations, J. Comput. Phys. 411

(2020) 109409.
18

http://refhub.elsevier.com/S0021-9991(21)00339-9/bibCDC18692DE1BF6973ACAAAFF268F865Fs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib28AD17877E49D337FA599033D16A5138s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib28AD17877E49D337FA599033D16A5138s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib5C7F772225E53F07A48BE10591ECD6B1s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib5C7F772225E53F07A48BE10591ECD6B1s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibC64E69F604E7E84FD7D997D6060CC8DDs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibA447CD52057D63A63E91A1CD1DE6FC91s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibA447CD52057D63A63E91A1CD1DE6FC91s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibF3939B87DB6EE7F8E42A7242F71981AEs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibF3939B87DB6EE7F8E42A7242F71981AEs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibF3939B87DB6EE7F8E42A7242F71981AEs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib827077F99ED4FC02E1A919BD21A2B864s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibC50CB97F71FB51C6A7A1E020AB6674AAs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibC50CB97F71FB51C6A7A1E020AB6674AAs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibD1CD0447B4AB5C94AD77B68779EA551Es1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib0C48D62F9A77338734E5AEEB1630E0C9s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib0C48D62F9A77338734E5AEEB1630E0C9s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib9F08E498F3028CD0DB07AC7306339663s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib9F08E498F3028CD0DB07AC7306339663s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibEF767FC0D5820DF32794930785F8F729s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibEF767FC0D5820DF32794930785F8F729s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibE12CEFC3B7387D5E6A7B98028F402203s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibE12CEFC3B7387D5E6A7B98028F402203s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibAB4A82D18E9AD60895B914CCBB32897Bs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibAB4A82D18E9AD60895B914CCBB32897Bs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibE06E93C4F4FC33E60863311C2F28B7FEs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibE06E93C4F4FC33E60863311C2F28B7FEs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibC3E562744231302E205D01BB26D84360s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibF078021DDA98133A1B0D80B256188D25s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib892601805DDE3E123BBBD98253468B92s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib892601805DDE3E123BBBD98253468B92s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib98EC66EC4C3104F37636553C6AE295B7s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib98EC66EC4C3104F37636553C6AE295B7s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibBA216971B17A8E43DF09BFFA20C7AB46s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibBA216971B17A8E43DF09BFFA20C7AB46s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib6494D548D77BB59707C1ED29E10DACDEs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib6494D548D77BB59707C1ED29E10DACDEs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib5CB202956E0F4FFAA7085E0BF5AB87F9s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibED4BCBDAC1AF290902F983270ABB8F9Ds1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibA825CC5DD0823584F00E7735C793C4A6s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibA825CC5DD0823584F00E7735C793C4A6s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bibA825CC5DD0823584F00E7735C793C4A6s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib09DD5F8E19D0DA5BCF1CF09C30A1BF1Cs1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib3E937D1AE738BB76AD2F6E7CB68E8D70s1
http://refhub.elsevier.com/S0021-9991(21)00339-9/bib3E937D1AE738BB76AD2F6E7CB68E8D70s1

	SelectNet: Self-paced learning for high-dimensional partial differential equations
	1 Introduction
	2 Least squares methods for PDEs
	3 SelectNet model
	4 Error estimates
	5 Network implementation
	5.1 Network architecture
	5.2 Special network for Dirichlet boundary conditions
	5.3 Derivatives of networks
	5.4 Network training

	6 Numerical experiments
	6.1 Comparative experiment
	6.1.1 Comparison with recent methods
	6.1.2 Comparison with binary weighting

	6.2 High-dimensional examples
	6.2.1 Elliptic equations with low-regularity solutions
	6.2.2 Linear parabolic equations
	6.2.3 Allen-Cahn equation
	6.2.4 Hyperbolic equations

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

