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The least squares method with deep neural networks as function parametrization has been 
applied to solve certain high-dimensional partial differential equations (PDEs) successfully; 
however, its convergence is slow and might not be guaranteed even within a simple 
class of PDEs. To improve the convergence of the network-based least squares model, we 
introduce a novel self-paced learning framework, SelectNet, which quantifies the difficulty 
of training samples, treats samples equally in the early stage of training, and slowly 
explores more challenging samples, e.g., samples with larger residual errors, mimicking 
the human cognitive process for more efficient learning. In particular, a selection network 
and the PDE solution network are trained simultaneously; the selection network adaptively 
weighting the training samples of the solution network achieving the goal of self-paced 
learning. Numerical examples indicate that the proposed SelectNet model outperforms 
existing models on the convergence speed and the convergence robustness, especially for 
low-regularity solutions.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

High-dimensional partial differential equations (PDEs) are important tools in physical, financial, and biological models 
[39,20,64,22,61]. However, developing numerical methods for high-dimensional PDEs has been challenging due to the curse 
of dimensionality in the discretization of the problem. For example, in traditional methods such as finite difference methods 
and finite element methods, O (Nd) degree of freedom is required for a d-dimensional problem if we set N grid points or 
basis functions in each direction to achieve O ( 1

N ) accuracy. Even if d becomes moderately large, the exponential growth Nd

in the dimension d makes traditional methods immediately computationally intractable.
Recent research of the approximation theory of deep neural networks (DNNs) shows that deep network approximation is 

a powerful tool for mesh-free function parametrization. The research on the approximation theory of neural networks traces 
back to the pioneering work [9,26,1] on the universal approximation of shallow networks with sigmoid activation functions. 
The recent research focus was on the approximation rate of DNNs for various function spaces in terms of the number of 
network parameters showing that deep networks are more powerful than shallow networks in approximation efficiency. 
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For example, smooth functions [44,42,62,18,47,60,16,15,17], piecewise smooth functions [51], band-limited functions [49], 
continuous functions [63,55,54]. The reader is referred to [54] for the explicit characterization of the approximation error 
for networks with an arbitrary width and depth.

In particular, deep network approximation can lessen or overcome the curse of dimensionality under certain circum-
stances, making it an attractive tool for solving high-dimensional problems. For functions admitting an integral represen-
tation with a one-dimensional integral kernel, no curse of dimensionality in the approximation rate can be shown via 
establishing the connection of network approximation with the Monte Carlo sampling or equivalently the law of large 
numbers [1,16,15,17,49]. Based on the Kolmogorov-Arnold superposition theorem, for general continuous functions, [45,24]
showed that three-layer neural networks with advanced activation functions can avoid the curse of dimensionality and the 
total number of parameters required is only O (d); [48] proves that deep ReLU network approximation can lessen the curse 
of dimensionality, if target functions are restricted to a space related to the constructive proof of the Kolmogorov-Arnold 
superposition theorem in [4]. If the approximation error is only concerned on a low-dimensional manifold, there is no curse 
of dimensionality for deep network approximation in terms of the approximation error [7,5,54]. Finally, there is also exten-
sive research showing that deep network approximation can overcome the curse of dimensionality when they are applied 
to approximation certain PDE solutions, e.g. [27,29].

As an efficient function parametrization tool, neural networks have been applied to solve PDEs via various approaches. 
Early work in [38] applies neural networks to approximate PDE solutions defined on grid points. Later in [11,36], DNNs 
are employed to approximate solutions in the whole domain, and PDEs are solved by minimizing the discrete residual er-
ror in the L2-norm at prescribed collocation points. DNNs coupled with boundary governing terms by design can satisfy 
boundary conditions [46]. Nevertheless, designing boundary governing terms is usually difficult for complex geometry. An-
other approach to enforcing boundary conditions is to add boundary errors to the loss function as a penalized term and 
minimize it as well as the PDE residual error [23,37]. The second technique is in the same spirit of least squares meth-
ods in finite element methods and is more convenient in implementation. Therefore, it has been widely utilized for PDEs 
with complex domains. However, network computation was usually expensive, limiting the applications of network-based 
PDE solvers. Thanks to the development of GPU-based parallel computing over the last two decades, which greatly boosts 
the network computation, network-based PDE solvers were revisited recently and have become a popular tool, especially 
for high-dimensional problems [13,19,25,33,58,3,65,40,2,29,28,6,53,41]. Nevertheless, most network-based PDE solvers suffer 
from robustness issues: their convergence is slow and might not be guaranteed even within a simple class of PDEs.

To ease the issue above, we introduce a novel self-paced learning framework, SelectNet, to adaptively choose training 
samples in the least squares model. Self-paced learning [35] is a recently raised learning technique that can choose a 
part of the training samples for actual training over time. Specifically, for a training data set with n samplings, self-paced 
learning uses a vector v ∈ {0, 1}n to indicate whether each training sample should be included in the current training stage. 
The philosophy of self-paced learning is to simulate human beings’ learning style, which tends to learn easier aspects of 
a learning task first and deal with more complicated samples later. Based on self-paced learning, a novel technique for 
selected sampling is put forward, which uses a selection neural network instead of the 0-1 selection vector v . Hence, it 
learns to avoid redundant training information and speeds up the convergence of learning outcomes. This idea is further 
improved in [30] by introducing a DNN to select training data for image classification. Among similar works, a state-of-the-
art algorithm named SelectNet is proposed in [43] for image classification, especially for imbalanced data problems. Based 
on the observation that samples near the singularity of the PDE solution are rare compared to samples from the regular part, 
we extend the SelectNet [43] to network-based least squares models, especially for PDE solutions with certain irregularity. As 
we shall see later, numerical results show that the proposed model is competitive with the traditional (basic) least squares 
model for analytic solutions, and it outperforms others for low-regularity solutions, in the aspect of the convergence speed. 
It is worth noting that our proposed SelectNet model is essentially tuning the weights of training points to realize the 
adaptive sampling. Another approach is to change the distribution of training points, such as the residual-based adaptive 
refinement method [32].

The organization of this paper is as follows. In Section 2, we introduce the least squares methods and formulate the 
corresponding optimization model. In Section 3, we present the SelectNet model in detail. In Section 4, we put forward the 
error estimates of the basic and SelectNet models. In Section 5, we discuss the network implementation in the proposed 
model. In Section 6, we present ample numerical experiments for various equations to validate our model. We conclude 
with some remarks in the final section.

2. Least squares methods for PDEs

In this work, we aim at solving the following (initial) boundary value problems, giving a bounded domain � ⊂ Rd:

• elliptic equations

Dxu(x) = f (x), in �,

B u(x) = g (x), on ∂�; (2.1)

x 0
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• parabolic equations

∂u(x, t)

∂t
−Dxu(x, t) = f (x, t), in � × (0, T ),

Bxu(x, t) = g0(x, t), on ∂� × (0, T ),

u(x,0) = h0(x), in �;
(2.2)

• hyperbolic equations

∂2u(x, t)

∂t2
−Dxu(x, t) = f (x, t), in � × (0, T ),

Bxu(x, t) = g0(x, t), on ∂� × (0, T ),

u(x,0) = h0(x),
∂u(x,0)

∂t
= h1(x) in �;

(2.3)

where u is the solution function; f , g0, h0, h1 are given data functions; Dx is a spatial differential operator concerning the 
derivatives of x; Bx is a boundary operator specifying a Dirichlet, Neumann or Robin boundary condition.

In this method, the temporal variable t will be regarded as an extra spatial coordinate, and it will not be dealt with 
differently from x. For simplicity, the PDEs in (2.1)-(2.3) are unified in the following form

Du(x) = f (x), in Q ,

Bu(x) = g(x), in �,
(2.4)

where x includes the spatial variable x and possibly the temporal variable t; Du = f represents a generic PDE; Bu = g
represents the governing conditions including the boundary condition and possibly the initial condition; Q and � are the 
corresponding domains of the equations.

Now we seek a neural network u(x; θ) approximating the solution u(x) of the PDE (2.4). Note the residual errors for the 
PDE and the governing conditions can be written by

RQ (u(x; θ)) := Du(x; θ) − f (x), R�(u(x; θ)) := Bu(x; θ) − g(x). (2.5)

One can solve the PDE by searching for the optimal parameters of the network that minimize these residual errors, i.e.

min
θ

‖RQ (u(x; θ))‖2
Q + λ‖R�(u(x; θ))‖2

�, (2.6)

where ‖ · ‖∗ is usually the L2-norm and λ is a parameter for weighting the sum, e.g.,

min
θ

Ex∈Q

[
|Du(x; θ) − f (x)|2

]
+ λEx∈�

[
|Bu(x; θ) − g(x)|2

]
. (2.7)

3. SelectNet model

The network-based least squares model has been applied to solve certain high-dimensional PDEs successfully. However, 
its convergence is slow and might not be guaranteed. To ease this issue, we introduce a novel self-paced learning framework, 
SelectNet, to adaptively choose training samples in the least squares model. The basic philosophy is to mimic the human 
cognitive process for more efficient learning: learning first from easier examples and slowly exploring more complicated 
ones. The proposed model is related to selected sampling [8,31], an important tool of deep learning for computer science 
applications. Nevertheless, the effectiveness of selected sampling in scientific computing has not been fully explored yet.

In particular, a selection network φs(x; θs) (subscript s for “selection”) and the PDE solution network u(x; θ) are trained 
simultaneously; the selection network adaptively weighting the training samples of the solution network achieving the 
goal of self-paced learning. φs(x; θs) is a “mentor” helping to decide whether a sample x is important enough to train the 
“student” network u(x; θ). The “mentor” could avoid redundant training information and help to speed up the convergence. 
This idea is originally from self-paced learning [35] and is further improved in [30] by introducing a DNN to select training 
data for image classification. Among similar works, a state-of-the-art algorithm named SelectNet was proposed in [43] for 
image classification, especially for imbalanced data problem. Based on the observation that samples near the singularity of 
the PDE solution are rare compared to samples from the regular part, we extend the SelectNet [43] to network-based least 
squares models, especially for PDE solutions with certain irregularity.

Originally in image classification, for a training data set D = {(xi, yi))}n
i=1, self-paced learning uses a vector v ∈ {0,1}n

to indicate whether or not each training sample should be included in the current training stage (vi = 1 if the ith sample 
is included in the current iteration). The overall target function including v is
3
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minθ,v∈{0,1}n

n∑
i=1

viL(yi, φ(xi; θ)) − λ

n∑
i=1

vi, (3.1)

where L(yi, φ(xi; θ)) denotes the loss function of a DNN φ(xi; θ) for classifying a sample xi to yi . When this model is 
relaxed to v ∈ [0, 1]n and the alternative convex search is applied to solve the relaxed optimization, a straightforward 
derivation easily reveals a rule for the optimal value for each entry v(t)

i in the t-th iteration as

v(t)
i = 1, if L(yi, φ(xi; θ(t))) < λ, and v(t)

i = 0, otherwise. (3.2)

A sample with a smaller loss than the threshold λ is treated as an “easy” sample and will be selected in training. Let us 
assume that the variables v and θ are trained alternatively. When computing θ(t+1) with a fixed v(t) , the classifier is trained 
only on the selected “easy” samples. When computing v (t+1) with a fixed θ(t+1) , the vector v help to adjust the training 
samples to be used in computing θ(t+2) . It was shown by extensive numerical experiments that this mechanism helps to 
reduce the generalization error for image classification when the training data distribution is usually different from the test 
data distribution [35]. In [30,43], a selection network φs(x; θs) ∈ [0, 1] is trained to select training samples instead of using 
the binary vector v with the following loss function:

minθ,θs

n∑
i=1

φs(xi; θs)L(yi, φ(xi; θ)) − λ

n∑
i=1

φs(xi; θs). (3.3)

The introduction of the selection network has mainly three advantages. First, it changes the discrete optimization problem 
in (3.1) to a continuous optimization problem in (3.3) that is much easier to solve. Besides, the selection network with 
values in [0, 1] can more adaptive adjust the weights to each sample. Finally, the number of parameters in the selection 
network can be much smaller than the size of v , since usually a small selection network is good enough to decide weights 
roughly.

The self-paced idea can also be applied to the preceding least squares model for solving PDEs. One naive way is to 
rewrite the optimization (2.7) as

min
θ

1

N1

N1∑
i=1

v ′
i|Du(x1

i ; θ) − f (x1
i )|2 + λ

N2

N2∑
i=1

v ′′
j |Bu(x2

i ; θ) − g(x2
i )|2, (3.4)

where {x1
i }N1

i=1 ⊂ � and {x2
i }N2

i=1 ⊂ ∂� are random samples; v ′
i and v ′′

i are adaptive binary weights denoting if the samples are 
selected or not in the loss. Similar adaptive sampling techniques can be found in [50,14]. Solving PDEs using deep learning 
is different from conventional supervised learning, where sample data are fixed without the flexibility to be arbitrary in the 
problem domain. The training and testing data distributions are the same, and there is no limitation for sampling when we 
solve PDEs. Therefore, appropriately selecting training data and assigning weights v ′ and v ′′ in each optimization iteration 
can better facilitate the convergence of deep learning to the true PDE solution.

Intuitively, a good strategy is to first choose “easy” samples to quickly identify a rough PDE solution and then use more 
“difficult” samples with large residual errors to refine the PDE solution. For example, in the early stage of the training, 
random samples are uniformly drawn in the PDE domain; in the latter stage of the training, we can select samples with 
almost the highest residual errors for training. However, this naive selection strategy might be too greedy: large residual 
errors usually occur where the PDE solution is irregular (e.g., near low regularity points), resulting in selected training 
samples gathering around these “difficult” points with few samples in other regions. Note that deep neural networks are 
functions globally supported in the PDE domain. Training with samples restricted in a small area may lead to large test 
errors in other areas. In our experiments, we observe that this naive selection strategy applied to (3.4) even works worse 
than the basic model (2.7) (see the numerical example in Section 6.1.2).

Borrowing the idea in [30,43], we introduce two neural networks, φ′
s(x; θ ′

s) and φ′′
s (x; θ ′′

s ), named as the selection network 
for the PDE residual error and the boundary condition error, respectively, to replace v ′ and v ′′ in (3.4). The introduction 
of selection networks admits three main advantages over the naive binary weights, as discussed previously for the models 
in (3.1) and (3.3). According to the discussion in the last paragraph, the selection networks φ′

s(x; θ ′
s) and φ′′

s (x; θ ′′
s ) should 

satisfy the following requirements. 1) As weight functions, they are required to be non-negative and bounded. 2) They 
should not have a strong bias for weighting samples in the early stage of training. 3) They prefer higher weights for samples 
with larger point-wise residual errors in the latter stage of training.

For the first requirement, φ′
s(x; θ ′

s) and φ′′
s (x; θ ′′

s ) are enforced to satisfy

m0 < φ′
s(x; θ ′

s) < M0, ∀x ∈ Q and ∀θ ′
s, (3.5)

m0 < φ′′
s (x; θ ′′

s ) < M0, ∀x ∈ � and ∀θ ′′
s , (3.6)

where M0 > 1 > m0 ≥ 0 are prescribed constants. Note the conditions (3.5)-(3.6) hold automatically if the last layer of 
activation functions of φ′

s(x; θ ′
s) and φ′′

s (x; θ ′′
s ) is bounded (e.g., using a tanh or sigmoid activation function) and the network 
4
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output is properly re-scaled and shifted as we shall discuss later in the next section. Therefore, the corresponding weighted 
least squares method is formulated by

Ex∈Q

[
φ′

s(x; θ ′
s)|Du(x; θ) − f (x)|2

]
+ λEx∈�

[
φ′′

s (x; θ ′′
s )|Bu(x; θ) − g(x)|2

]
. (3.7)

For the second requirement, when the selection networks are randomly initialized with zero bias and random weights 
with a zero mean and a small variance, the selection networks are random functions close to a constant. Therefore, the 
selection networks have no bias in weighting samples in the early stage of training.

The third requirement can also be satisfied. Based on the principle that higher weights should be added to samples with 
larger point-wise residual errors, we can train φ′

s(x; θ ′
s) and φ′′

s (x; θ ′′
s ) via

max
θ ′

s,θ
′′
s

Ex∈Q

[
φ′

s(x; θ ′
s)|Du(x; θ) − f (x)|2

]
+ λEx∈�

[
φ′′

s (x; θ ′′
s )|Bu(x; θ) − g(x)|2

]
(3.8)

subject to the normalization conditions,

1

|Q |
∫
Q

φ′
s(x; θ ′

s)dx = 1,
1

|�|
∫
�

φ′′
s (x; θ ′′

s )dx = 1. (3.9)

Note in (3.8), to achieve the maximum of the loss function, φ′
s(x; θ ′

s) tends to take larger values where |Du(x; θ) − f (x)| is 
larger, and take smaller values elsewhere. Also, φ′

s(x; θ ′
s) will not take large values everywhere since it is normalized by (3.9). 

The same mechanism is also true for φ′′
s (x; θ ′′

s ). In the latter stage of training, φ′
s(x; θ ′

s) and φ′′
s (x; θ ′′

s ) have been optimized 
by the maximization problem above to choose “difficult” samples and, hence, the third requirement above is satisfied.

For simplicity, we can combine (3.8) and (3.9) as the following penalized optimization

max
θ ′

s,θ
′′
s

Ex∈Q

[
φ′

s(x; θ ′
s)|Du(x; θ) − f (x)|2

]
+ λEx∈�

[
φ′′

s (x; θ ′′
s )|Bu(x; θ) − g(x)|2

]

− ε−1

⎡
⎢⎣

⎛
⎜⎝ 1

|Q |
∫
Q

φ′
s(x; θ ′

s)dx − 1

⎞
⎟⎠

2

+
⎛
⎝ 1

|�|
∫
�

φ′′
s (x; θ ′′

s )dx − 1

⎞
⎠

2
⎤
⎥⎦ , (3.10)

where ε > 0 is a small penalty constant. When φ′
s(x; θ ′

s) and φ′′
s (x; θ ′′

s ) are fixed, we can train the solution network u(x; θ)

by minimizing (3.10), i.e.,

min
θ

max
θ ′

s,θ
′′
s

Ex∈Q

[
φ′

s(x; θ ′
s)|Du(x; θ) − f (x)|2

]

+ λEx∈�

[
φ′′

s (x; θ ′′
s )|Bu(x; θ) − g(x)|2

]

− ε−1

⎡
⎢⎣

⎛
⎜⎝ 1

|Q |
∫
Q

φ′
s(x; θ ′

s)dx − 1

⎞
⎟⎠

2

+
⎛
⎝ 1

|�|
∫
�

φ′′
s (x; θ ′′

s )dx − 1

⎞
⎠

2
⎤
⎥⎦ , (3.11)

which is the final model in the SelectNet method.

Remark 3.1. An alternate way to penalize the selection networks is to divide the residual terms in (3.8) by the norms of the 
selection networks. Namely, we solve

min
θ

max
θ ′

s,θ
′′
s

‖φ′
s‖−1

� Ex∈Q

[
φ′

s(x; θ ′
s)|Du(x; θ) − f (x)|2

]
+ λ‖φ′′

s ‖−1
� Ex∈�

[
φ′′

s (x; θ ′′
s )|Bu(x; θ) − g(x)|2

]
. (3.12)

However, in practice, the results of (3.12) are sensitive to the types of norms and hyperparameters; hence (3.12) is more 
challenging to obtain good numerical results than the formulation (3.11).

Although the introduction of SelectNet is motivated by self-paced learning in image classification, surprisingly, SelectNet 
can also be understood via conventional mathematical analysis. The square root of the non-negative selection networks can 
also be understood as the test function in the weak form of conventional PDE solvers. In the SelectNet, we apply the idea 
of test functions to both the PDE and the boundary condition, e.g., hoping to identify u(x; θ) ensuring the following two 
equalities for all non-negative test functions:(√

φ′
s(x; θ ′

s),Du(x; θ)
)

=
(√

φ′
s(x; θ ′

s), f (x)
)

Q Q

5
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with (·, ·)Q as the inner product of L2(Q ) and(√
φ′′

s (x; θ ′′
s ),Bu(x; θ)

)
�

=
(√

φ′′
s (x; θ ′′

s ), g(x)
)

�

with (·, ·)� as the inner product of L2(�). Conventional methods apply test functions for the PDE only and the test functions 
are not necessarily non-negative. In the SelectNet, the integration by part is not applied so as to let the test function play 
a role of weighting, while conventional methods use the integration by part to weaken the regularity requirement of the 
PDE solution. Only a single test function is used in SelectNet with a maximum requirement to guarantee that the solution 
of the min-max problem is the solution of the original problem (see Theorem 4.1 later), while conventional methods use 
sufficiently many test functions that can form a set of basis functions in the discrete test function space. The idea of using 
test functions in deep learning was also used in [65], where the test function was used in a weak form with integration 
by part. The idea of using a min-max optimization problem instead of the minimization problem to solve PDEs has been 
studied for many decades, e.g. [21]. Maximizing over all possible test functions can obtain the best test function that 
amplifies the residual error the most, which can better help the minimization problem to identify the PDE solution. When 
an optimization algorithm is applied to solve the min-max problem, the optimization dynamic consists of a solution dynamic 
that converges to the PDE solution and a test dynamic that provide a sequence of test functions to characterize the error of 
the numerical solution at each iteration. The training dynamic of the selection network in SelectNet approximates the test 
function dynamic, and the training dynamic of the solution network in SelectNet approximate the solution dynamic.

4. Error estimates

In this section, theoretical analysis is presented to show the solution errors of the basic and SelectNet models are 
bounded by the loss function (mean square of the residual). Specifically, we will take the elliptic PDE with Neumann 
boundary condition as an example. The conclusion can be generalized for other well-posed PDEs by similar argument. 
Consider{

−	u + cu = f , in �,
∂u
∂n = g, on ∂�,

(4.1)

where � is an open subset of Rd whose boundary ∂� is C1 smooth; f ∈ L2(�), g ∈ L2(∂�), c(x) ≥ σ > 0 is a given function 
in L2(�).

Theorem 4.1. Suppose the problem (4.1) admits a unique solution u∗ in C1(�). Also, suppose the variational optimization problem

min
u∈N J (u) := min

u∈N

∫
�

| − 	u + cu − f |2dx + λ

∫
∂�

|∂u

∂n
− g|2dx, (4.2)

has an admissible set N ⊂ C2(�) containing a feasible solution ub ∈N satisfying

J (ub) < δ, (4.3)

then

‖ub − u∗‖H1(�) ≤ c max(1,σ−1)max(1, λ− 1
2 )δ

1
2 , (4.4)

where c > 0 is a constant only depending on d and �. Furthermore, let S ′ be a subset of {φ ∈ C(�) : φ > 0} which contains φ(x) ≡ 1
for all x ∈ �; let S ′′ be a subset of {φ ∈ C(∂�) : φ > 0} which contains φ(x) ≡ 1 for all x ∈ ∂�. Suppose the variational optimization 
problem

min
u∈N JS ′,S ′′(u) := min

u∈N max
φ′∈S ′,φ′′∈S ′′

∫
�

φ′| − 	u + cu − f |2dx + λ

∫
∂�

φ′′|∂u

∂n
− g|2dx

− ε−1

⎡
⎢⎣

⎛
⎝ 1

|�|
∫
�

φ′dx − 1

⎞
⎠

2

+
⎛
⎝ 1

|∂�|
∫
∂�

φ′′dx − 1

⎞
⎠

2
⎤
⎥⎦ , (4.5)

has a feasible solution us ∈N satisfying

JS ′,S ′′(us) < δ, (4.6)

then

‖us − u∗‖H1(�) ≤ c max(1,σ−1)max(1, λ− 1
2 )δ

1
2 . (4.7)
6
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Proof. Let vb := ub − u∗ . Starting from the identity

−	vb + cvb = −	ub + cub − f , (4.8)

we multiply vb to both sides of (4.8) and integrate over �. Since vb ∈ C1(�), by integration by parts it follows

‖∇vb‖2
L2(�)

+ σ‖vb‖2
L2(�)

≤
∫
�

(−	ub + cub − f )vbdx +
∫
∂�

vb
∂vb

∂n
dx. (4.9)

Hence, by the Cauchy-Schwarz inequality,

min(1,σ )‖vb‖2
H1(�)

≤ ‖ − 	ub + cub − f ‖L2(�) · ‖vb‖L2(�) + ‖vb‖L2(∂�) · ‖∂ub

∂n
− g‖L2(∂�). (4.10)

By the trace theorem, ‖vb‖L2(∂�) ≤ c′‖vb‖H1(�) for some c′ > 0 only depending on d and �. Then we have

min(1,σ )‖vb‖2
H1(�)

≤ ‖vb‖H1(�)

(
‖ − 	ub + cub − f ‖L2(�) + c′‖∂ub

∂n
− g‖L2(∂�)

)

≤ c′′‖vb‖H1(�)

(
‖ − 	ub + cub − f ‖2

L2(�)
+ ‖∂ub

∂n
− g‖2

L2(∂�)

) 1
2

, (4.11)

with c′′ = √
2 max(1, c′). Finally, by the hypothesis (4.3), (4.4) directly follows from (4.11).

Moreover, by taking φ′ ≡ 1, φ′′ ≡ 1 we directly have∫
�

| − 	u + cu − f |2dx + λ

∫
∂�

|∂u

∂n
− g|2dx ≤ JS ′,S ′′(us) < δ. (4.12)

The same estimate for ‖us − u∗‖H1(�) can be obtained by similar argument. �
By using the triangle inequality, we can conclude the solutions of the basic and SelectNet models are equivalent as long 

as the loss functions are minimized sufficiently. As an immediate result, we have the following corollary.

Corollary 4.2. Under the hypothesis of Theorem 4.1, we have

‖ub − us‖H1(�) ≤ c max(1,σ−1)max(1, λ− 1
2 )δ

1
2 . (4.13)

5. Network implementation

5.1. Network architecture

The proposed framework is independent of the choice of DNNs. Advanced network design may improve the accuracy and 
convergence of the proposed framework, which would be interesting for future work.

In this paper, feedforward neural networks will be repeatedly applied. Let φ(x; θ) denote such a network with an input 
x and parameters θ , then it is defined recursively as follows:

x0 = x,

xl+1 = σ(W lxl + bl), l = 0,1, · · · , L − 1,

φ(x; θ) = W LxL + bL,

(5.1)

where σ is an application-dependent nonlinear activation function, and θ consists of all the weights and biases {W l, bl}L
l=0

satisfying

W 0 ∈ Rm×d, W L ∈R1×m, bL ∈R,

W l ∈Rm×m, for l = 1, · · · , L − 1,

bl ∈Rm×1, for l = 0, · · · , L − 1.

(5.2)

The number m is called the width of the network and L is called the depth.
For simplicity, we deploy the feedforward neural network with the activation function σ(x) = sin(x) as the solution 

network that approximates the solution of the PDE. As for the selection network introduced in Section 3, since it is required 
to be bounded in [m0, M0], it can be defined via
7
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φs(x; θ) = (M0 − m0)σs(φ̂(x; θ)) + m0, (5.3)

where σs(x) = 1/(1 + exp(−x)) is the sigmoidal function, and φ̂ is a generic network, e.g. a feedforward neural network 
with the ReLU activation σ(x) = max{0, x}.

5.2. Special network for Dirichlet boundary conditions

In the case of homogeneous Dirichlet boundary conditions, it is worth mentioning a special network design that satisfies 
the boundary condition automatically as discussed in [36,3].

Let us focus on the boundary value problem to introduce this special network structure. It is straightforward to generalize 
this idea to the case of an initial boundary value problem and we omit this discussion. Assume a homogeneous Dirichlet 
boundary condition

u(x) = 0, on ∂�, (5.4)

then a solution network automatically satisfying the condition above can be constructed by

u(x; θ) = h(x)û(x; θ), (5.5)

where û is a generic network as in (5.1), and h is a specifically chosen function such as h = 0 on �.
For example, if � is a d-dimensional unit ball, then u(x; θ) can take the form

u(x; θ) = (|x|2 − 1)û(x; θ). (5.6)

For another example, if � is the d-dimensional cube [−1, 1]d , then u(x; θ) can take the form

u(x; θ) =
d∏

i=1

(x2
i − 1)û(x; θ). (5.7)

Since the boundary condition Bu = 0 is always fulfilled, it suffices to solve the min-max problem

min
θ

max
θ ′

s

Ex∈Q

[
φ′

s(x; θ ′
s)|Du(x; θ) − f (x)|2

]
− ε−1

⎛
⎜⎝ 1

|Q |
∫
Q

φ′
s(x; θ ′

s)dx − 1

⎞
⎟⎠

2

(5.8)

to identify the best solution network u(x; θ).

5.3. Derivatives of networks

Note that the evaluation of the optimization problem in (3.11) involves the derivative of the network u(x; θ) in terms of 
x. When the activation function of the network is differentiable, the network is differentiable and the derivative in terms 
of x can be evaluated efficiently via the back-propagation algorithm. Note that the network we adopt in this paper is not 
differentiable. Hence, finite difference method will be utilized to estimate the derivative of networks. For example, for the 
elliptic operator Du := ∇ · (a(x)∇u), Du(x; θ) can be estimated by the second-order central difference formula

Du(x; θ) ≈ 1

h2

d∑
i=1

a(x + 1

2
hei)(u(x + hei, θ) − u(x; θ)) − a(x − 1

2
hei)(u(x; θ) − u(x − hei, θ)), (5.9)

up to an error of O (dh2). In the experiments (Section 6), we take h = 10−4 for all examples with d up to 100. Hence 
the truncation errors are up to O (10−6), which are overwhelmed by the final errors (at least O (10−4)). This implies the 
truncation errors from finite difference can be ignored in practice.

Indeed, one can also use the automatic differentiation in TensorFlow or Pytorch based on the explicit formula of networks 
to evaluate the derivatives in the practical implementation, which brings no truncation errors. However, the computational 
cost of this approach is high when a second order (or higher) derivative is computed. Hence we choose finite difference 
method for derivative computation in this paper.

5.4. Network training

Once networks have been set up, the rest is to train the networks to solve the min-max problem in (3.11). The stochas-
tic gradient descent (SGD) method or its variants (e.g., Adam [34]) is an efficient tool to solve this problem numerically. 
Although the convergence of SGD for the min-max problem is still an active research topic [52,10,59], empirical success 
shows that SGD can provide a good approximate solution.
8
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Algorithm 1 The Least Squares Model with SelectNet.
Require: the PDE (2.4)
Ensure: the parameters θ in the solution network u(x; θ)

Set parameters n, n1, n2 for iterations and parameters N1, N2 for sample sizes
Initialize u(x; θ0,0) and φs(x; θ0,0

s )

for k = 1, · · · , n do
Generate uniformly distributed sampling points
{x1

i }N1
i=1 ⊂ Q and {x2

i }N2
i=1 ⊂ �

for j = 1, · · · , n1 do
Update θk−1, j

s ← θ
k−1, j−1
s + τ

(k)
s ∇θs J (θk−1, j−1

s , θk−1,0)

end for
θ

k,0
s ← θ

k−1,n1
s

for j = 1, · · · , n2 do
Update θk−1, j ← θk−1, j−1 − τ (k)∇θ J (θk,0

s , θk−1, j−1)

end for
θk,0 ← θk−1,n2

if Stopping criteria is satisfied then
Return θ = θk,0

end if
end for

Before completing the algorithm description of SelectNet, let us introduce the key setup of SGD and summarize it in 
Algorithm 1 below. In each training iteration, we first set uniformly distributed training points {x1

i }N1
i=1 ⊂ Q and {x2

i }N2
i=1 ⊂ �, 

and define the empirical loss of these training points as

J (θ, θs) = 1

N1

N1∑
i=1

φ′
s(x1

i ; θ ′
s)|Du(x1

i , θ) − f (x1
i )|2

+ λ

N2

N2∑
i=1

φ′′
s (x2

i ; θ ′′
s )|Bu(x2

i , θ) − g(x2
i )|2

− ε−1

⎡
⎣(

1

N1

N1∑
i=1

φ′
s(x1

i ; θ ′
s) − 1

)2

+
(

1

N2

N2∑
i=1

φ′′
s (x2

i ; θ ′′
s ) − 1

)2⎤⎦ , (5.10)

where θs := [θ ′
s, θ ′′

s ]. Next, θs can be updated by the gradient ascent via

θs ← θs + τs∇θs J , (5.11)

and θ can be updated by the gradient descent via

θ ← θ − τ∇θ J , (5.12)

with step sizes τs and τ . Note that training points are randomly renewed in each iteration. In fact, for the same set of 
training points in each iteration, the updates (5.11) and (5.12) can be performed n1 and n2 times, respectively.

6. Numerical experiments

In this section, the proposed SelectNet model is tested on several PDE examples, including elliptic/parabolic and lin-
ear/nonlinear high-dimensional problems. Other network-based methods are also implemented for comparison. For all 
methods, we choose the feedforward architecture with activation σ(x) = max(x3, 0) for the solution network. Addition-
ally, for SelectNet, we choose feedforward architecture with ReLU activation for the selection network. AdamGrad [12] is 
employed to solve the optimization problems, with learning rates

τ
(k)
s = 10−4, (6.1)

for the selection network, and

τ (k) = 10−3−3 j/1000, if n( j) < k ≤ n( j+1), ∀ j = 0, · · · ,1000, (6.2)

for the solution network, where 0 = n(0) < · · · < n(1000) = n are equidistant segments of total iterations. Other parameters 
used in the model and algorithm are listed in Table 6.1. Unless otherwise specified, in all examples, we set N1 = 10000, 
N2 = 10000, n = 20000, n1 = 1, λ = 1, m = 100, L = 3 for all methods and set n2 = 1, ε = 0.001, ms = 20, Ls = 3, m0 = 0.8, 
M0 = 5 especially for SelectNet.
9
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Table 6.1
Parameters in the model and algorithm.

d the dimension of the problem
m the width of each layer in the solution network
ms the width of each layer in the selection network
L the depth of the solution network
Ls the depth of the selection network
M0 the upper bound of the selection network
m0 the lower bound of the selection network
n number of iterations in the optimization
n1 number of updates of the selection network in each iteration
n2 number of updates of the solution network in each iteration
N1 number of training points inside the domain in each iteration
N2 number of training points on the domain boundary in each iteration
ε penalty parameter to uniform the selection network
λ summation weight of the boundary least squares

We take the (relative) 2 error at uniformly distributed testing points {xi} ⊂ Q̃ as the metric to evaluate the accuracy, 
which is formulated by

e2(θ) :=
⎛
⎜⎝

∑
i
|u(xi; θ) − u(xi)|2∑

i
|u(xi)|2

⎞
⎟⎠

1
2

. (6.3)

Here Q̃ ⊂ Q is the domain for error evaluation. In all examples, we choose 10000 testing points for error evaluation.

6.1. Comparative experiment

In the first experiment, we compare the proposed SelectNet model with other network-based methods on the following 
2-D Poisson equation,

−	u = 1, in � := (−1,1) × (−1,1),

u = 0, on ∂�,
(6.4)

with a solution expressed by the series

u(x1, x2) = − 64

π4

∞∑
n,m=1

n,m odd

(−1)
n+m

2
cos(nπx1

2 )cos(mπx2
2 )

nm(n2 + m2)
. (6.5)

As a classic testing example for PDE methods, the problem (6.4) is well-known for the low-regularity of its solution at 
the four corners of �. In this experiment, both the interior training points and testing points are chosen uniformly in the 
domain, and the boundary training points are chosen uniformly on the boundary. Since the numerical results are influenced 
by the randomness of the network initialization and the stochastic training process, we implement each method for 50 
times with different seeds and compute the mean and standard deviation of the final errors.

6.1.1. Comparison with recent methods
We implement the basic least squares model, SelectNet model, and recently raised methods: deep Ritz method (DRM) 

[19] and weak adversarial networks (WAN) [65] under the same setting, and compare their convergence speed. All methods 
are implemented for 600 seconds, with learning rates given in (6.2) for the first 10000 iterations and 10−6 for the sub-
sequent iterations. The means and standard deviations of the final 2 errors of 50 trials are listed in Table 6.2. For each 
method. We select 10 of the 50 trials to present their error curves with respect to the computing time in Fig. 6.1. It is 
observed in the first 50 seconds SelectNet has the fastest error decay, and in the end, SelectNet obtains the smallest errors. 
We also note that for each method, the error deviations are much smaller than the error means, showing the numerical 
stability with respect to the stochasticity of algorithms.

Across different trials, the selection networks of the SelectNet model evolve in a nearly identical manner. From all trials, 
we take one to show the surfaces of the selection network at the initial stage and the 2000th, 5000th, 10000th iterations 
(see Fig. 6.2). We can clearly find that high peaks appear at the four corners over time where the solution is less regular, 
while other region preserves to be low and constant. This distribution will improve the convergence at the corners that are 
“difficult” to deal with.
10
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Table 6.2
Means and standard deviations of the 2 errors obtained within 600 seconds by various methods in 
the comparative example (totally 50 trials for each method).

Basic SelectNet DRM WAN

Mean of Errors μ 7.588 × 10−3 3.288 × 10−4 8.681 × 10−4 2.177 × 10−3

Standard Deviation σ 1.080 × 10−3 7.821 × 10−5 1.072 × 10−4 8.002 × 10−4

Coefficient of Variation σ/μ 14.2% 23.8% 12.4% 36.8%

Fig. 6.1. 2 errors v.s. computing time in the comparative example (Red: SelectNet model; Blue: the basic model; green: DRM; yellow: WAN. 10 selected 
curves for each method). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 6.2. The evolution of the selection network over time in the comparative example.

6.1.2. Comparison with binary weighting
To verify that SelectNet is advantageous over other weighting strategies, we also implement the binary weighting method. 

Namely, in the basic least squares method, we select p (0 < p < 1) training points having larger residuals to be weighted 
with wL > 1, and let the other points be weighted with wS < 1. Specifically, we solve the problem (6.4) by

min
θ

1

N1

⎛
⎝ ∑

x∈L1

wL| − 	u(x; θ) − 1|2 +
∑
x∈S1

wS| − 	u(x; θ) − 1|2
⎞
⎠

+ λ

N2

⎛
⎝ ∑

x∈L2

wL|u(x; θ)|2 +
∑
x∈S2

wS|u(x; θ)|2
⎞
⎠ , (6.6)

where {L1, S1} is a partition of {x1
i }N1

i=1 satisfying |L1| = pN1, |S1| = (1 − p)N1, | − 	u(x′; θ) − 1| ≥ | − 	u(x′′; θ) − 1| for 
any x′ ∈ L1 and x′′ ∈ S1; {L2, S2} is a partition of {x2

i }N2
i=1 satisfying |L2| = pN2, |S2| = (1 − p)N2, |u(x′; θ)| ≥ |u(x′′; θ)| for 

any x′ ∈L2 and x′′ ∈ S2. The binary weights are chosen subject to the following normalization condition

wL p + wS(1 − p) = 1, wL p + wS(1 − p) = 1. (6.7)

As with the preceding tests, we implement the weighting model (6.6) with various combinations of parameters for 600 
seconds. The means and deviations of the final 2 errors are listed in Table 6.3. It shows the best combination obtains the 
mean error 7.375 × 10−3, which is slightly better than the original basic model and much worse than the SelectNet model.

6.2. High-dimensional examples

In the second experiment, we will implement the basic and SelectNet models in a series of high-dimensional examples 
(d ≥ 10) to reflect the advantage of using SelectNet. Note from the preceding comparative experiment that SelectNet can 
11
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Table 6.3
Means and standard deviations of the 2 errors obtained within 600 seconds by binary 
weighting in the comparative example (totally 50 trials for each combination).

p = 20%

wL/wS 2 4 8

Mean of Errors μ 8.104 × 10−3 8.649 × 10−3 9.260 × 10−3

Standard Deviation σ 8.384 × 10−4 1.131 × 10−3 1.205 × 10−3

Coefficient of Variation σ/μ 10.3% 13.1% 13.0%

p = 50%

wL/wS 2 4 8

Mean of Errors μ 7.395 × 10−3 7.612 × 10−3 7.506 × 10−3

Standard Deviation σ 1.080 × 10−3 1.168 × 10−3 1.113 × 10−3

Coefficient of Variation σ/μ 14.6% 15.3% 14.8%

p = 80%

wL/wS 2 4 8

Mean of Errors μ 7.426 × 10−3 7.375 × 10−3 7.512 × 10−3

Standard Deviation σ 9.502 × 10−4 1.023 × 10−3 1.077 × 10−3

Coefficient of Variation σ/μ 12.8% 13.9% 14.3%

obtain much smaller error means than the basic model, which overwhelms the error deviations. Therefore, considering the 
long time spent in high-dimensional problems, we only implement both models for once in each case to present the results 
in the paper.

Since in high-dimensional cases, most of the random points following a uniform distribution are near the boundary, we 
take an annularly uniform strategy instead of uniform sampling. Specifically, for a high-dimensional unit circle, we divide 
it into Na annuli {k/Na < |x| < (k + 1)/Na}Na−1

k=0 and generates N1/Na samples uniformly in each annulus. In the following 
experiments, we choose Na = 10. This sampling strategy is applied in generating interior training points and testing points. 
For generating boundary training points, we still use uniform sampling.

6.2.1. Elliptic equations with low-regularity solutions
First, let us consider the nonlinear elliptic equation inside a bounded domain

−∇ · (a(x)∇u) + |∇u|2 = f (x), in � := {x : |x| < 1},
u = g(x), on ∂�,

(6.8)

with a(x) = 1 + 1
2 |x|2. In this case, we specify the exact solution by

u(x) = sin(
π

2
(1 − |x|)2.5), (6.9)

whose first derivative is singular at the origin and the third derivative is singular on the boundary. Note the problem is 
nonlinear if μ �= 0. We solve the high-dimensional nonlinear problem for d = 10, 20 and 100. The errors obtained by the 
basic and SelectNet models with 20000 iterations are listed in Table 6.4. Since the basic model costs less time for one 
iteration, we also list the errors obtained by SelectNet with the same computing time as the basic model for comparison. 
The curves of error decay versus iterations are shown in Fig. 6.3. From these results, it is observed both models are effective 
on the nonlinear elliptic problem of all dimensions, but SelectNet has a clearly better performance than the basic model: its 
accuracy is one-digit better than the basic model. Besides, we present in Fig. 6.4 the following surfaces at (x1, x2)-slice

• the numerical solution: u(x1, x2, 0, · · · , 0; θ)

• the modulus of the numerical residual error: |Du(x1, x2, 0, · · · , 0; θ) − f (x1, x2, 0, · · · , 0)|
• the selection network: φ′

s(x1, x2, 0, · · · , 0; θ ′
s)

for the 20-dimensional case. It shows that the residual error accumulates near the origin due to its low regularity. On the 
other hand, the selection network attains its peak at the origin, implying that training points are highly weighted near 
the origin where the residual error is mainly distributed. Note that the selection network is not supported locally near the 
low-regularity point, which means that the selection network will not make the training of the solution network focus on 
the low-regularity point only.
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Table 6.4
2 errors obtained by various models in the nonlinear elliptic example. (“SelectNet” 
and “Basic” denote the final errors obtained by SelectNet and basic models with 
20000 iterations; “SelectNet∗” denotes the error obtained by SelectNet model with 
the same computing time as 20000 iterations of basic model, the same below).

Dimension SelectNet SelectNet∗ Basic

d = 10 7.944 × 10−4 8.089 × 10−4 3.193 × 10−3

d = 20 9.584 × 10−4 1.241 × 10−3 1.707 × 10−2

d = 100 9.257 × 10−3 1.004 × 10−2 1.862 × 10−1

Fig. 6.3. 2 errors v.s. iterations in the nonlinear elliptic example (Red: SelectNet model; Blue: the basic model).

Fig. 6.4. The (x1, x2)-surfaces of the numerical solution, the modulus of residual errors and selection network by SelectNet (d=20) in the nonlinear elliptic 
example.

6.2.2. Linear parabolic equations
In this example, SelectNet is tested on the following initial boundary value problem of the linear parabolic equation

∂t u(x, t) − ∇x · (a(x)∇xu(x, t)) = f (x, t), in Q := � × (0,1),

u(x, t) = g(x), on ∂� × (0,1),

u(x,0) = h(x), in �,

(6.10)

where a(x) = 1 + 1
2 |x| and � := {x : |x| < 1}. The exact solution is set by

u(x, t) = exp(|x|√1 − t). (6.11)

Note u is at most C0 smooth at t = 1 and |x| = 0. In the SelectNet model, time-discretization schemes are not utilized. 
Instead, we regard t as an extra spatial variable of the problem. Hence the problem domain � × (0, 1) is an analog of a 
hypercylinder, and the “boundary” value is specified in the bottom � × {t = 0} and the side ∂� × (0, 1). This example is 
tested for d = 10, 20 and 100, by evaluating the relative 2 error in � × (0, 1). The errors of the basic and SelectNet models 
are listed in Table 6.5. It is clearly shown SelectNet still obtains smaller errors than the basic model with the same number 
of iterations or computing time. In Fig. 6.5 the curves of error decay are presented, and in Fig. 6.6 the (t, x1)-surfaces of 
the numerical solution, the modulus of the residual errors and selection network for d = 20 are displayed, from that we can 
observe the residual error is mainly distributed near the singular point x = 0 and the terminal slice t = 1. Accordingly, the 
selection network takes its maximum in this region.
13
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Table 6.5
2 errors obtained by various models in the linear parabolic example.

Dimension SelectNet SelectNet∗ Basic

d = 10 1.490 × 10−2 1.502 × 10−2 3.531 × 10−2

d = 20 2.990 × 10−2 3.000 × 10−2 8.748 × 10−2

d = 100 6.302 × 10−2 6.268 × 10−2 1.357 × 10−1

Fig. 6.5. 2 errors v.s. iterations in the linear parabolic example (Red: SelectNet model; Blue: the basic model).

Fig. 6.6. The (t, x1)-surfaces of the numerical solution, the modulus of residual errors and selection network by SelectNet (d=20) in the linear parabolic 
example.

6.2.3. Allen-Cahn equation
In this example, we test SelectNet model on the following 100-dimensional Allen-Cahn equation

∂t u(x, t) − 	xu(x, t) − u(x, t) + u3(x, t) = f (x, t), in Q := � × (0,1),

u(x, t) = g(x), on ∂� × (0,1),

u(x,0) = h(x), in �,

(6.12)

where a(x) = 1 + 1
2 |x| and � := {x : |x| < 1}. Note the Allen-Cahn equation is a nonlinear parabolic equation. The exact 

solution is set as

u(x, t) = e−t sin(
π

2
(1 − |x|)2.5). (6.13)

The errors obtained by SelectNet model and the basic model with 20000 iterations are 6.358 × 10−3 and 3.347 × 10−2, 
respectively. And the SelectNet error obtained with the same computing time as the basic model is 6.218 × 10−3. The error 
curves versus iterations are shown in Fig. 6.7. It can be seen in the figure the error curve of the SelectNet decays faster to 
lower levels than the basic model. Moreover, the (t, x1)-surface of the numerical solution, the modulus of residual errors 
and selection network are shown in Fig. 6.8, from that we can observe the selection network takes its maximum near the 
singular point x = 0 and the initial slice t = 0, where the highest residual error is located.

6.2.4. Hyperbolic equations
In the last example, we test SelectNet by solving the initial boundary value problem of the hyperbolic (wave) equation, 

which is given by
14
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Fig. 6.7. 2 errors v.s. iterations in the Allen-Cahn example (Red: SelectNet model; Blue: the basic model).

Fig. 6.8. The (t, x1)-surfaces of the numerical solution, the modulus of residual errors and selection network by SelectNet in the Allen-Cahn example.

Table 6.6
Final 2 errors obtained by various models in the hyperbolic example.

Dimension SelectNet SelectNet∗ Basic

d = 10 1.671 × 10−2 1.701 × 10−2 5.200 × 10−2

d = 20 3.281 × 10−2 3.292 × 10−2 9.665 × 10−2

d = 100 6.319 × 10−2 6.351 × 10−2 3.089 × 10−1

∂2u(x, t)

∂t2
− 	xu(x, t) = f (x, t), in � × (0,1),

u(x, t) = g0(x, t), on ∂� × (0,1),

u(x,0) = h0(x),
∂u(x,0)

∂t
= h1(x) in �,

(6.14)

with � := {x : |x| < 1} and exact solution is set by

u(x, t) =
(

exp(t2) − 1
)

sin(
π

2
(1 − |x|)2.5). (6.15)

Same as in preceding examples, we solve the problem of d = 10, 20 and 100 and compute the relative 2 errors of the basic 
and SelectNet models. The obtained errors are listed in Table 6.6, which demonstrates the SelectNet still converges faster 
than the basic model (especially when d is higher), obtaining smaller errors. Also, we display the curves of error decay in 
Fig. 6.9, and the (t, x1)-surfaces of the numerical results when d = 20 in Fig. 6.10. The results in the examples of parabolic 
and hyperbolic equations imply our proposed model works successfully for time-dependent problems.
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Fig. 6.9. 2 errors v.s. iterations in the hyperbolic example (Red: SelectNet model; Blue: the basic model).

Fig. 6.10. The (t, x1)-surfaces of the numerical solution, the modulus of residual errors and selection network by SelectNet (d=20) in the hyperbolic example.

7. Conclusion

In this work, we improve the network-based least squares models on generic PDEs by introducing a selection network 
for selected sampling in the optimization process. The objective is to place higher weights on the sampling points having 
larger point-wise residual errors, and correspondingly we propose the SelectNet model that is a min-max optimization. In 
the implementation, both the solution and selection functions are approximated by feedforward neural networks, which 
are trained alternatively in the algorithm. The proposed SelectNet framework can solve high-dimensional PDEs that are 
intractable by traditional PDE solvers.

In the numerical examples, it is demonstrated the proposed SelectNet model works effectively for elliptic, parabolic, and 
hyperbolic equations, even if in the case of nonlinear equations. Furthermore, numerical results show that the proposed 
model outperforms the basic least squares model. In the problems with low-regularity solutions, SelectNet will focus on the 
region with larger errors automatically, finally improving the speed of convergence.

In this paper, we apply neural networks with piecewise polynomial functions as activation functions. If the floor, ReLU, 
Sign, and exponential functions are used as activation functions, [56,57] showed that deep network approximation has no 
curse of dimensionality in the approximation error for Hölder continuous functions. But unfortunately, efficient numerical 
algorithms for these networks are still not available yet. It is interesting to explore the application of these networks to 
approximate the solutions of high-dimensional PDEs in the weak sense as future work.
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