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 A NUMERICAL APPROACH FOR DEFECT MODES

 LOCALIZATION IN AN INHOMOGENEOUS MEDIUM*

 YIQI GUt AND XIAOLIANG CHENG^

 Abstract. Some optical design problems arise from the study of photonic bandgap structure,
 including defect modes localization, that is, computing the optimal dielectric property to highly
 localize particular eigenfunctions of a Dirichlet model problem. The steepest descent method has
 been studied for this problem. In this paper, we present a new approach for the defect modes
 localization. Rather than focusing on the original objective and optimizing the structure along the
 gradient, a variant of the original problem is put forward with its corresponding method. Although
 the original problem and the variant presented in this work are not equivalent, our method is shown
 to solve both of them in numerical experiments. Furthermore, the algorithm in this paper can restart
 the optimization if the original gradient descent method gets stuck during the iteration.

 Key words, mode localization, defect modes, spectrum problem, optimal design, photonic
 bandgap

 AMS subject classifications. 65K10, 82D25, 49M07

 DOI. 10.1137/120883566

 1. Introduction. In recent years, there has been some research involving pho
 tonic crystals (first introduced in [8, 15]) and the bandgap phenomenon, in which
 the wave whose frequency is in some band cannot propagate in this medium. The
 phenomenon is related to loss mechanisms in optical and mechanical systems, thus
 leading to a series of optimal problems about the medium. For example, we can derive
 the eigenvalue problem from wave equations, then set up the objective whose variables
 are the eigenpairs and search for the optimal solution in an admissible set. Cox and
 Dobson [13, 14] have considered the optimization of bandgap in two-dimensional peri
 odic structures composed of two given dielectric materials, including the E-polarization
 and Η-polarization cases. Another level set method can be used in this optimization
 [5]; Lipton, Shipman, and Venakides [12] have optimized the electromagnetic resonant
 properties in periodic photonic crystal slabs, from the relation between resonance and
 transmission; Kao and Santosa [6] have derived the maximization of quality factor
 from wave equations in an inhomogeneous medium, whose index of refraction is the
 design variable. This optimization is related to a nonlinear eigenvalue problem, and
 the quality factor is defined as the ratio between the real part of the complex eigen
 frequency and the imaginary part. Numerical results demonstrate that the optimal
 solution is a piecewise constant function, which is analytically proved by Karabash [9];
 Heider et al. [10] have optimized scattering resonances in micro- and nano-scale com
 ponents, thus decreasing the radiative loss, which is the magnitude of the imaginary
 part of scattering resonances; Osting [3] considered the optimization of two spectral
 functions from the Dirichlet Laplacian eigenvalue problem. The variable domains are
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 NUMERICAL APPROACH FOR DEFECT MODES LOCALIZATION 2189

 represented by Fourier-cosine coefficients and a BFGS quasi-Newton method is used
 to search for the optimal region.

 This work focuses on the problem of defect modes localization, previously dis
 cussed by Dobson and Santosa [7]. In the two-dimensional Dirichlet eigenvalue prob
 lem, we are to find material properties to localize the defect modes, which are certain
 eigenpairs of the spectral equation. A simple model problem with a Dirichlet bound
 ary can be utilized to replace the original complicated problems, and the goal is to
 lead the eigenfunction highly localized. In [7], a gradient descent method is proposed
 to deal with this optimization. Denoting the objective as J and the considered design
 as b, the method evaluates the gradient g = by an adjoint approach and updates
 b along the direction. Some other optimization problems of photonic crystals are also
 solved by the gradient method or generalized gradient method [5, 6, 10, 13, 14].

 The optimal design problem is considered from a new perspective in this work.
 We search for the designs aiming at getting desired eigenvectors, instead of getting
 lower objective J(b). A variant of the original problem is presented, as well as the
 corresponding formula and algorithms. Different from the idea in [7], a preknown
 objective (the desired eigenvector) is set and approximated. Although the new opti
 mization presented by us is not equivalent to the original one, it is found in numerical
 experiments that the original objective J(b) is indeed decreased, as well as the objec
 tive of the new problem (see section 5).

 When testing the original gradient algorithm presented in [7] in some specific
 examples, we notice that the process may get stuck. That is, the objective J(b) stops
 decreasing and even increases at some stage instead of converging to a well-optimized
 solution. One reason for this phenomenon may be the process falling into a local
 minimum extrema. Another probable reason is the restrictive operator worked on the
 variable b making its components bounded in the admissible set after each update,
 which "pulls back" the variable to a poor position. However, our modified Algorithm
 2 (see section 4) can deal with this case much better and seldom stagnates at an early
 stage. A corresponding example is shown in section 5.

 The outline of this paper is as follows. In section 2 we introduce the background of
 the model problem, including the original formulation and a new variant. A restricted
 form of the model problem is specifically presented for analysis, and the variant is
 deduced from the Rayleigh quotient property of symmetric matrices. We consider the
 problem from the relationship between the variation of the design and the eigenvector
 in section 3 and propose the numerical methods in section 4. In section 5 we show
 some examples to demonstrate the effects and features of the algorithm. A conclusion
 is given in section 6. The symbols in this paper are as in [7], and || ■ || stands for || · ||2.

 2. Problem description. As we know, the propagation of waves will be im
 peded in the medium with periodic structures which have certain bandgaps. In this
 case, a point defect can be introduced, leading to a spatially localized standing wave.
 This work aims at the optimization of the localized modes. We use ep(x) to char
 acterize the dielectric property of the periodic medium. Having a photonic bandgap
 means the spectral problem

 Au + u2ep(x)u = 0, χ G !2,

 has a gap in its continuous spectrum. We introduce a defect into the medium, that
 is, give a perturbation η(χ) with compact support to ep(x). It brings the form

 (2.1) Au + ω2(ερ(χ) + g(x))u = 0, χ 6 Κ2.
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 2190 YIQI GU AND XIAOLIANG CHENG

 If an eigenpair (ω, u(x)) of (2.1) satisfies that ω falls into the bandgap of the periodic
 medium and u(x) decays exponentially away from the defect, it is defined as a defect
 mode. More details about defect modes are given in [1, 2, 7, 11]. Different pertur
 bations cause different defect modes, and we are to find η(χ) which brings highly
 localized eigenfunctions.

 2.1. Model problem. The problem we consider is a simplified version, which
 is restricted in a domain with Dirichlet boundary. The model problem not only
 can overcome the difficulty of handling the original unbounded domain but also can
 consider e(x) and η(χ) as a single variable. Moreover, in this simple version, we need
 not consider satisfying explicitly the conditions to create defect modes in a photonic
 bandgap structure. The simplified model shows the major property of the original
 problem, and the approaches solving it can be applied to the original one.

 The Dirichlet eigenvalue problem is described as follows:

 (2.2a) —Au = Xeu in Ω,
 (2.2b) u = 0 on 5Ω,

 where u £ Hq(Q) is the modes; e(x) is the dielectric coefficient of the medium, sat
 isfying 0 < eo ^ e(x) < ci < oo; and Ω is a simply connected bounded domain in
 R2 with Lipschitz continuous boundary. We normalize u to keep unit energy in the
 domain, that is,

 (2.3) [ eu2 = 1.
 Jn

 The goal is to find a proper dielectric coefficient e(x), to make the eigenfunctions
 u most localized. Therefore, we introduce the objective

 J(e,u) = / weu
 Jq

 to measure the degree of localization, where w is some given weight function satisfying
 w{ 0,0) = 0.

 To make the problem well-posed, a global form and a local form are presented
 in [7], However, what we consider is another restricted form of (2.2). Discretizing
 the operator —Δ to a corresponding matrix noted as A, u(x) to a n-dimensional
 vector noted as u, and e(x) to a corresponding diagonal matrix noted as 5(e), which
 multiplies the entries of u pointwise by the elements in e(x), we get

 (2.4) Au = X S(e)u.

 It is assumed A and 5(e) are both symmetric and positive definite, and thus (2.4) can
 be rewritten as

 AS-ï{Sïu) = \sHsïu).

 Let 5~î = Β, S?u = ν, then

 (2.5a) ΒΑΒυ = Xv,

 (2.5b) (ν,υ) = 1,

 2
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 NUMERICAL APPROACH FOR DEFECT MODES LOCALIZATION 2191

 where (2.5b) is from the discretization of (2.3) and (·,·) means the inner product
 of vectors. We construct a vector b using the diagonal elements of Β and its entry
 b^) = ι / y/T{ Xj), where Xj is the jth discretized point. We define an admissible set
 A = {6 € Μ" : 6o < ζ 6χ}, where bo — l/^/ëT and bi = l/y/ëô , which are the
 bounds of Vs entries; then the set A will be searched for the optimal designs.

 Defining the objective under discretization as

 (2.6) J{b) = ±{v(b),Wv(b)),

 where, W is a prescribe symmetric weight matrix, v(b) is some eigenvector of BAB
 with unit modulus, the unrestricted optimal design problem will be

 minJ(6).
 6E.Â

 To be compatible with some restricted forms, such as the global problem and
 local problem described in [7], we discuss the following restricted form: set bo e A,
 Bo = diag(i>o) and vq satisfies

 BoAB0vo = XiV0, (v0, v0) = 1,

 where λ» is the ith (single) eigenvalue of BqABq. So vo is well-defined regardless of
 the sign; then the objective Ji(bo) = Wvo) is well-evaluated. Viewing Bo as
 variable Β, we let it vary continuously; then vo will vary weak-continuously as well,
 noted as v. (For the possible eigenvalues crossing, υ may not always belong to the ith
 eigenvalue of BAB.) If υ is always single, J,(6) will be a continuous functional with
 variable b. We need to evaluate

 (2.7) minJj(6).
 b€-4

 If Ao is multiple, the initial vector vq should be appointed specifically from the mul
 tidimensional eigenspace.
 It is easy to see J,(b) is related not only to b but also to bo- How bo varies will

 affect Ji(b), that is, bo can be changed into b through different ways, and thus the
 ith eigenpair of BqABq may be changed into different results, causing .7,(6) to be not
 well-defined. For this reason, we should consider this problem in a practical view, i.e.,

 find a way to modify bo, thus minimizing J χ = ^{vo, Wvo) as far as possible.

 2.2. Variant of problem. We introduce the Rayleigh quotient of matrix W

 R(W, x) = ^Wx) (x,x)

 whose maximum and minimum can be evaluated from the Courant-Fisher min-max

 theorem. For simplicity, it is stated as follows.
 Theorem 2.1. Suppose A is a real symmetric matrix; then the Rayleigh quotient

 R(A,x), χ e Rn, satisfies

 Ai = R{A,qi) ^ R(A,x) ^ R{A,qn) = A„,

 where λχ and Xn are the smallest and largest eigenvalue of A, and q\ and qn are the
 associated eigenvectors.
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 2192 YIQI GU AND XIAOLIANG CHENG

 It is known from Theorem 2.1 B(W,x) ^ B(W, v* ) = An,in(lT), where v* is the
 eigenvector with unit modulus belonging to the smallest eigenvalue of W. Then we
 have

 (v*,Wv*) = min (v, Wv).
 υ€Κ"

 Proposition 2.2. J is defined as (2.6), v, v* e Rn, ||u|| = ||n*|| = 1; then

 |J(u) - J (υ*) I ^ ||W|| ■ min{||u + ν*||, ||υ - w*||}.

 Proof.

 1
 \J(v)-J(v*)\  \{v,Wv)~ \(v*,Wv*  2 |(ν-υ*,1^(ν + ν*))|,

 using the Cauchy-Schwarz inequality,

 \J(v) - J(v*)\ < ^||« - «ΊΙ · \\W(v + v*)||

 <^ΙΙ« + «ΊΙ·||^||·||«-νΊ|<||^||·||ν-«*||.
 Similarly,

 Thus the proposition is proven. 0
 From Proposition 2.2, it is natural to take ν close to ±v*, making | J(v) - J(v*)\

 have a lower bound. The optimization (2.7) can be transformed to

 (2.8) min||v(6) — v*||.
 b£A

 Although (2.7) and (2.8) are not equivalent, we observe in numerical experiments
 that by approximating v(b) to υ*, the function J fib) is decreased simultaneously. In
 the next section, a numerical method is presented to solve problem (2.8). We first
 derive the relationship between the perturbation of b and υ from (2.5), then describe
 the approach to make ν approximate to v*.

 3. Method description. Rewrite (2.5) as

 BABv = (v,BABv)v,

 where we suppose υ is the unit eigenvector associated with the it h eigenvalue. Give b
 a small perturbation Ab, which causes a linearized response Av in v; then we get

 (3.1) (υνΎ - 7)(5Adiag(u) + diag(ABv))Ab = (BAB - XI - 2λυ?;τ)Δ'ί;,

 where 0(Av2) is ignored. The preceding equation shows if we want ν to have a
 perturbation Av, we can just add the perturbation Ab to b, which can be computed
 from (3.1). However, (3.1) with respect to unknown Δ6 has a factor υντ - I in the
 coefficient, which is singular with rank η — I. So Ab cannot be computed via matrix
 inversion. We choose to compute Δ6 through the normal equation of (3.1), thus
 obtaining a least square solution restricted to a (n - l)-dimensional subspace.
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 NUMERICAL APPROACH FOR DEFECT MODES LOCALIZATION 2193

 As the symmetry of BAB, we can do its eigenvalue decomposition BAB =
 VDVT, where V is orthogonal and D is diagonal formed by the eigenvalues of BAB.
 By multiplying each column of V by υυΎ — I, we derive

 (3.2) υυΎ -I = Vdiag(-1,..., 0(i\..., -1)VT.

 Denote M = BAdiag(u) + diag(ABv); then (3.1) can be rewritten as

 (3.3) diag(-l,..., 0(i),..., -1 )VTMAb = VT(BAB - XI - Χνυτ)Αν.

 To derive the normal equation, we premultiply diag(-l,..., 0^,..., -1) on both sides
 of (3.3), then obtain

 (3.4) diag(l,..., 0(i),..., 1 )VTMAb
 = diag(-l,..., 0(i),..., -1 )VT{BAB -Χ I- 2XvvT)Av

 = diag(-l,...,0(i),..., -1 )VT{BAB - XI) Av,

 Notice the common factor diag(l,..., 0(t\..., 1)VT of (3.4) can be cancelled, leading
 a simplified equation

 (3.5) MAb = -{BAB - XI)Av.

 Therefore if Ab is a solution of (3.5), it also solves (3.4). We can just compute Δ6
 from (3.5).

 As the solution from (3.5) is restricted to a subspace of the original equation (3.1),
 we cannot expect that the computed perturbation Ab added to b will accurately trigger
 the given variation Δη of v. However, the distance between the true perturbation of
 ν after adding Ab to b and the previously given Av can be estimated as follows.

 Proposition 3.1. Under the definitions above and with the assumption X is a
 single nonzero eigenvalue, let u,Ab* G Rn satisfiy MAb* — —(BAB — XI)u; then

 ||χ(Δ6*) — ullo = min ||χ(Δ6) — ullo,
 " A6€R"

 where x(Ab) is the unique solution of equations

 {BAB -XI- 2XvvT)x = (vvT - I)MAb

 with unknown x.

 Proof. Let D = diag(Ai, λ2,..., λ„) and A is the ith eigenvalue, namely, Aj. From
 the fact

 BAB -XI- 2Χνντ = Fdiag(Ai - A,..., -2AW,..., An - X)VT

 and the singleness of A we know BAB - XI - 2XvvT is nonsingular. On the other
 hand, using (3.2), we have

 MAb* = -{BAB - XI)u,

 so

 diag(l · ■ · 0(i) · · · 1 )VTMAb* = diag(Ai - A,..., 0(i),..., A„ - A)FT(-u),
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 2194 YIQI GU AND XIAOLIANG CHENG

 which is equivalent to

 MTVdiag((Ài - λ)"2,..., 0(î),..., (Αη - X)~2)VTMAb*

 = MTUdiag((Ai - Λ)"1,...,0^),..., (λη - X)~x)VT(-u)

 and so to

 MTMAb* = Μτιι,

 where M = (BAB - XI - 2Χνυτ)~χ(νυτ - I)M. Therefore, Ab* is the least square
 solution of the equation My = u with unknown y, that is,

 (3.6) \\MAb* - u||2 = min \\My — u\\2
 y€R"

 After putting x(Ab*) — MAb* into (3.6), we finish the proof. 0
 Now we examine the singularity of M, noticing the fact

 M — diag (ABv) + BAd\&g(v)

 (3.7) = diag(i?-1Ài;) + BABB~xdiag(v)
 = {XI + BAB)B'x diag(r).

 It is straightforward that the condition number of XI + BAB is decided by the ratio
 between λ + Xmax(BAB) and Λ + Xmm(BAB), and the condition number of B~x is
 controlled by the element bounds bo and 6j. So in usual computations (XI+BAB)B~x
 is well-conditioned, and the singularity of M is mainly decided by the ratio between
 the largest and smallest entries of v. If there exists one element of ν very close to
 zero, M will be ill-conditioned.

 4. Basic algorithm. From (3.5), it is easy to propose an algorithm to make
 the eigenvector belonging to the ith eigenvalue of BAB approach the objective v*.
 Supposing the design in Arth iteration, denoted as bk, is just computed, we can next
 compute the eigenvector Vk (of BkABk) and compute Διγ according to some rules.
 Under the assumption that Abk can be determined exactly from the relation (3.1),
 we let bk+i = bk + Abk and compute Vk+i as an eigenvector of Bk+iABk+i which
 continuously varies from Vk ; then it is a new approximation to v* and satisfies Vk+ι =
 Vk + Ai'k■ Defining Avk is a crucial task in the algorithm, which requires the series
 {t'fc} to converge to v* gracefully. For convenience, we can define Avk = ω(ν* - Vk),
 where ω is a small real factor to control the modulus of Avk so that formulations
 derived from perturbation analysis will be effective. However, considering the near
 orthogonality between v* and Vk in most situations, we think this definition is too
 "abrupt" and the continuity of the shape of Vk is broken. In fact, we observe in
 our experiments that even though the objective J«(6) falls down a lot, v* and Vk
 are still nearly orthogonal. Consequently, we search for some appropriate manners
 by which the series {vk} approaches v* more "smoothly." Noticing the gradient of
 J(v) = ^(v,Wv) is evaluated as

 VJ(t>) = Wv,
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 NUMERICAL APPROACH FOR DEFECT MODES LOCALIZATION 2195

 we can move Vk in the direction of negative gradient —Wvk to the global minimum
 point υ*. Systematically, the term Avk can be defined as follows:

 (4-1) 9k = Wvk,

 (4.2) Avk = -ω ■ gk,

 ιΛ q\ ~ a 4" Δυ/j
 ('} fc~ IK + AtTfeU'
 (4.4) Avk = vic-vk,

 where ω is a small real factor to keep Avk and Avk small perturbations, and the
 formation (4.1)-(4.4) ensures ||uk + Δυ^|| = 1, which is required in the variant of
 problem and perturbation analysis. Following the preceding procedure, we let

 (4.5) Vk+i =Vk + Avk,

 thus constructing a series of Vk, whose convergence can be shown by the following
 proposition.

 Proposition 4.1. Under the definition (4.1)-(4.5), let v* be the unit eigenvector
 associated with the smallest eigenvalue ofW, denoted as Amjn(W), which is single. If

 the initial vector vq is nonorthogonal to v* and the factor ω satisfies ω < j—\ψ)>
 then the series {v*,} converges to ±v*.

 Proof. From (4.1)—(4.5), we have

 Vk
 Vk-l -uWvk-i

 Hwfc-i -ujWvk-1|

 {I-uW)vk-x
 I\(I-uW)vk-i\\

 (±zuM)vk-1
 Oik-1

 By recurrence, we have

 (/ - uW)2vk-2 (.I - u>W)kvο
 Vk= ~

 oik-iak-2 Oik-iOik-2 · ■ · ota

 As the unit of ||ν&||, it is obvious that

 (I - ujW)kv0
 Vk

 ||(7 - uW)kvo\i

 When 0 < ω < xmax1(w) > M J ~ <*>W) = I - wA(W) > 0. In this case, the principal
 eigenvalue of I - wW is I - wÀmin(W) and its associated eigenvector is ±v*. As
 the theory of power method, (7 - wW)kvο —> βυ*, where β is some real. So Vk ->
 ±v*. □

 It is seen from Proposition 4.1 that the smallness of ω not only restricts the
 modulus of Vk but also ensures the convergence of the vector series. In the preceding
 discussion, we optimize J(y) with respect to variable υ along the gradient g = Wv,
 and ω plays the role of step length. It should be noticed that setting ω as a certain
 number less than is sufficient for the convergence. It is different from the

 gradient method described in [7], where J(b) is optimized along the gradient DJ^),
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 ALGORITHM 1. Basic algorithm for minimization of Ji(b).

 Require: initial design bo (bo € A);
 Ensure: optimized design b*
 1. for k = 0 to Κ do

 2. if k = 0 then

 3. compute the eigenvector vk (||«α·|| = 1); associated with the 7th eigenvalue of
 BkABk;

 4. else

 5. find vk = arginin{!|t'A· - υ*_ι|| : vk is an eigenvector of BkABk, ||nfc|| = 1};
 6. end if

 7. check for convergence of vk or Ji(bk);
 8. if vk or Ji(bk) converges then
 9. return bk\
 10. end if

 11. compute Avk;
 12. compute Abk, i.e. solve equations

 (λfcJ + BkABk)BkxA\ag(v)Abk = -(BkABk - XkI)Avk;
 13. bk+1 <— P(bk + Abk)
 14. end for

 and a line search subroutine is needed to determine the appropriate step length in
 each iteration.

 After getting bk, we are to compute the eigenvector vk of BkABk, which is contin
 uously from the eigenvector vk-i of Bk-\ABk-\, assumed to belong to the 7th eigen
 value. As the possible eigenvalues cross, it cannot be expected that vk still belongs to
 the 7th eigenvalue of BkABk. The approach to locate vk among all the eigenvectors is
 similar to that in [7]. That is, if Abk-1 is small enough, all the eigenvectors of BkABk
 come from their previous eigenvectors of Bk_ ι ABk^ ι continuously and slightly. As the

 symmetry of BkABk, vk is orthogonal to any other eigenvector, denoted as v'k. There
 fore, vk-1 must be nearly orthogonal to v'k, i.e., \\vk-i - v'k\\ « %/2 > llwfc-i — vk\\- So
 we can just choose the one closest to vk-i among all the unit eigenvectors of BkABk
 to be vk. In summary, the algorithm is shown in Algorithm 1.

 The operator Ρ in line 13 of Algorithm 1 means restricting bk + Abk to the
 admissible set A. Considering that the objective Jt(bk) remains unchanged after
 multiplying a nonzero real number to bk, it is hoped we find a real μ a, to make iikbk
 as close as possible to Ρ(μkbk), thus weakening the restriction. One of the choices of
 Ρ is as follows. Define

 P(b)  (9 A
 60O(i)Oi

 bo, b^ < bo for i = 1,2,..., n,
 όι, 6«>6i

 and μ = argmin{#(p6, Ρ(μΙή) : μ G Κ}, where θ(·, ·) means the included angle between
 two vectors, and let P(b) = P(jib).

 For line 5, we give a simple approach. In BABv = Xv, by perturbing b with Ab
 and causing linearized response ΔΛ in Λ and Av in v, we got the linearized result

 Δλ — 2(v, BAABv).

 If bk + Abk is not changed much after being operated by Ρ in line 13, i.e., bk+1 «
 bk + Abk, then Avk can be seen as an approximation to vk+i — vk, thereby AXk = 2

 Require: initial design bo (bo € A);
 Ensure: optimized design b*
 1. for k = 0 to K do

 2. if k — 0 then

 3. compute the eigenvector vk (11 c'a- 11 = 1); associated with the ith eigenvalue of
 BkABk;

 else

 find vk = argmin{||ufc - ufc_i|| : vk is an eigenvector of BkABk, ||ufc|| = 1};
 end if

 check for convergence of vk or ./,(bk);
 if vk or Ji(bk) converges then

 return bk;
 end if

 compute Avk;
 compute Abk, i.e. solve equations
 (AfcJ + BkABk)B^xAia,g(v)Abk = ~(BkABk - \kI)Avk;

 13. 6^+1 P(bk + Abk)
 14. end for
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 NUMERICAL APPROACH FOR DEFECT MODES LOCALIZATION 2197

 (■Vk, BkAAB^Vk) can be seen as an approximation to Afe+i — Afe. So after getting bk+1,

 we can just compute the eigenpairs of Bk+\ABk+\ near the point Xk+i — + Δ Afe
 and then search for them for Ufe+i, so line 5 can be implemented as follows:

 i· AAfe_i t-2(ufe_i,i3fe_iAAJ3fe_iUfe_i);
 ii. Afe <— Afe_i + AAfc_i;

 iii. find Vk = argmin{||ufe — Ufc_i|| : Vk is a eigenvector of BkABk associated with

 the eigenvalue near Afe, ||wfc|| = 1}.
 Although bk+Abk may be not changed much (or not changed at all) by Ρ in line 13

 at the first several iterations, it may have more and more components outweighing
 the given bounds bo and 6i as k increases, which will be restricted forcibly by Ρ in the
 end of every iteration. Consequently, there is such a phenomenon that even though
 bk + Abk is more optimized than the preceding design bk, P(bk + Abk) may be less
 optimized than bk, resulting in J{bk+1) > J(6fc). To ensure J(bfc) is nonincreasing,
 we simply add a line search procedure to Algorithm 1, by seeing Abk as a direction
 and optimizing bk along it. Notice the relation

 (Afe/ + BfeABfc)B^1diag(u)A6fe = -{BkABk - AkI)Avk,

 where Avk « —uWvk', applying a step length to Abk is almost equivalent to applying
 a step length to ω. To sum up, we give the modified Algorithm 2 with an unfixed ω.

 It should be clarified that the unfixed ω in Algorithm 2 is different from that in
 the discussion in the beginning of section 4, where the ω does not have to be halved

 Algorithm 2. Modified algorithm for minimization of Ji{b).

 Require: initial design bo (bo 6 >1);
 Ensure: optimized design b*
 1. choose a step parameter u> and a tolerance tol;
 2. compute the eigenvector vo (||t>o|| = 1); associated with the ith eigenvalue of

 BqABo\
 3. compute Ji(bo);
 4. for k = 0 to K do

 5. compute Avk with parameter
 6. compute Abk, i.e. solve equations

 (AfeJ + BkAB^B^1 diag(v)Abk = -(BkABk - XkI)Avk\
 7- bk+i <— P(bk + Abk)
 8. find Vk+i — argmin{||ffc+1 - vk\\ : vk+i is an eigenvector of Bk+iABt+i,

 ll«fc+i|| =!};
 compute Ji(bk+1);
 while Ji(bk+i) > Ji(bk) do

 uj = w/2;
 if u) < tol then

 return bk;
 end if

 same as Line 5-9;
 end while

 check for convergence of vk or Ji(bk)',
 if Vk or Ji(bk) converges then

 return bk\
 end if

 21. end for
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 repeatedly to ensure the convergence. Here the ω is equivalent to being multiplied
 by a trial step. The only reason we add this step-halved line search subroutine is
 to overcome the interference of operator P, making J(bk) nonincreasing. All the
 following numerical experiments are based on Algorithm 2.

 5. Numerical examples. We give three numerical examples to examine the
 algorithm. The domain Ω in problem (2.2) is set as [—0.5,0.5] x [—0.5,0.5] and is
 divided into a 120 χ 120 grid. The Laplace operator is discretized by the five-point
 finite difference scheme. The weight matrix W is defined by w(x) = j.x|2, and the ma
 terial constraints ei <— 9, cq <— 1. The algorithm is implemented through MATLAB,
 using its toolboxes and sparse matrix data structures if needed. In each iteration, the
 eigenpairs are computed by an implicitly restarted block Lanczos algorithm and the
 linear equations are solved by the generalized minimal residual method.

 In the first example, the initial design e(x) = 25/16 which is constant. We choose
 the 21st smallest eigenvalue, whose associated eigenvector has the energy distribution
 shown in Figure 5.1(b). We implement our method in this example. After nearly
 1220 iterations, J(b) falls from initial 8.218 χ 10~2 to optimized 1.060 χ 10-2 and
 converges. The curves of ||ufc — v* [| and J(5fe), final distribution of c(.x'), and energy
 density of final eigenvector v/ are shown in Figure 5.1(a), (c), (d).

 500 1000

 iteration

 500 1000

 iteration

 (a) Curves of ||v — υ*||2 and J(b). (b) Energy density of initial eigenvector.

 (c) Final profile of e(x). (d) Energy density of final eigenvector.

 500 1000
 iteration

 500 1000

 iteration

 (a) Curves of j|w — «*||2 and J(b). (b) Energy density of initial eigenvector.

 (c) Final profile of e(x). (d) Energy density of final eigenvector.

 Fig. 5.1. Variables for the first experiment.
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 The second example is same as the first one, but the initial design e(x) = 25/16
 except for a small defect region in the center, as shown in Figure 5.2(b). The chosen
 eigenvector has the energy distribution shown in Figure 5.2(c). After 248 iterations,
 J(b) falls from initial 8.273 χ 10~2 to optimized 1.220xl0~2 and a too-small ω stops the
 iteration. Compared with the result of the previous example, the final distribution
 of e(x) in this example keeps its small defect region in the center. The curves of
 ||ufc — v* || and J(bk), final distribution of e(x), and energy density of final eigenvector
 Vf are shown in Figure 5.2(a), (e), (f).

 100 150 200
 iteration

 (a) Curves of ||v — u*||2 and J{b).

 (b) Initial profile of e(x). (c) Energy density of initial eigenvector.

 (d) Final profile of e(x). (e) Energy density of final eigenvector.

 100 150 200
 iteration

 (a) Curves of ||u — u*||2 and J{b).

 (b) Initial profile of e(x). (c) Energy density of initial eigenvector.

 (d) Final profile of e(x). (e) Energy density of final eigenvector.

 Fig. 5.2. Variables for the second experiment.
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 llv-v ll2 by GJ

 Ilv-v ll2 by GV

 50 100

 iteration

 • J(b) by GJ
 J(b) by GV

 50 100
 iteration

 (a) Curves of ||u — v*\\2 and J(6). (b) Energy density of initial eigenvector.

 (c) Final profile of e(x). (d) Energy density of final eigenvector.

 Fig. 5.3. Variables for the final experiment.

 In the final example, we keep track of the 11th smallest eigenvalue and set the
 initial design constant with value 25/16. The eigenvector has a lower frequency and
 degree of localization than in the previous examples, shown in Figure 5.3(b). First, we
 implement the gradient descent method (denoted GJ for its optimizing J(b)) described
 in [7]. The objective J(b) falls from initial 8.03 χ UP2 to 7.63 χ 10~2 after 16 iterations
 and gets stuck early. (It stops decreasing but increases in the next iteration.) Then
 we restart it by our algorithm (denoted GV for its optimizing ||u — u*||) and J(6) de
 creases again to 2.00 χ 10~2 after 136 iterations and converges. The curves of ||ι>& —υ*||
 and J(bk) are shown in Figure 5.3(a), where the dotted line is produced by GJ and
 a solid line is produced by GV. The final distribution of e(x) and the energy density
 of the final eigenvector are shown in Figure 5.3(c), (d). For comparison, we imple
 ment GV solely in this example, where it does not get stuck and gives a objective of
 1.72 χ 10-2.

 From the numerical results, we notice that our algorithm indeed works on the
 original optimization (2.7), though it is derived based on a variant (2.8). We can also
 notice that in most situations J(b*,) and ||t^. — ν* jj decrease or increase together, but
 not necessarily. In our examples, the phenomenon of eigenvalues crossing is observed.
 The tracked eigenvalue finally moves to the 36th, 36th, and 20th in the three examples

 1.38

 Ilv-v ll2 by GJ

 Ilv-v ll2 by GV

 0 50 100
 iteration

 0.1

 0.05

 • J(b) by GJ
 J(b) by GV

 50 100
 iteration

 (a) Curves of ||u — v*\\2 and J(6). (b) Energy density of initial eigenvector.

 (c) Final profile of t(x). (d) Energy density of final eigenvector.

 Fig. 5.3. Variables for the final experiment.
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 above. Furthermore, we should mention that the matrix Mk becomes more and
 more ill-conditioned during the iteration, because the eigenvector Vk goes close to
 v* = [0,..., 0,1,0,..., 0], leading more and more entries close to zero. Fortunately,
 from (3.7) we know the ill-conditioned factor contained in Mk is diag(tr). Therefore
 it is not difficult to handle these ill-conditioned equations. For example, the entries
 of Vk which are less than a small given positive number can be set to zero, and the
 corresponding equations can be ignored. By solving the remaining system we will get
 a least square solution.

 In the third example, the gradient descent method gets stuck early in 16th itera
 tion, decreasing J(b) only by nearly 5%. The reason, we believe, is the restriction of
 the bound operator P. In the description of the gradient method in [7], the operation
 of Ρ is after the descent procedure, which may change the optimized design for the
 worse and increase the objective. This is verified in our extra tests by setting the
 bounds bo and b\ to be more relaxed and observing the gradient method can work
 longer before getting stuck. However, our algorithm can get rid of the stuck point
 and restart this optimization in this case. Although the bound operator Ρ also works
 in our algorithm, fortunately in most of our numerical examples the optimization can
 be done to a great extent with the modified Algorithm 2.

 We should mention that the factor ω affects both the convergence and the con
 vergence rate as we discusses in section 4. When ω is in a limited range, the series Vk
 will approach v* more quickly as ω is set larger. But there may be no convergence if
 ω exceeds some threshold just as Proposition 4.1 shows. For another reason, we need
 to keep a small ω to guarantee the continuous variation of b.

 In our numerical results, the phenomenon of a defect occurring in the center of
 the optimized medium is not obvious as in [7]. It should be pointed out that the
 process from an initial design to an optimized one through different methods may
 be different, because the current eigenvector Vk may approach the optimal one v* in
 various directions, resulting in entirely different optimized designs. Recent related
 research is about design constraints and points out the optimal designs should be
 piecewise constant with upper and lower bound as values, namely, the "bang-bang"
 designs. For example, Osting [4] proves that the maximizer of the gap-to-midgap
 ratio of a special inhomogeneous wave equation is a bang-bang control, and the Bragg
 structure is the unique maximizer of the first spectral ratio.

 6. Conclusion. This work studies an optimal design problem about photonic
 crystals, which requires increasing the localization of eigenfunctions of the Dirichlet
 eigenvalue problem. In the discrete form, we keep track of a certain eigenpair of the
 matrices formed by designs and make the objective as small as possible. Different
 from the gradient descent method that updates the variable b along the gradient of
 J(b) in [7], we present a new method making the corresponding eigenvector υ close to
 v* along the gradient of J{v). In the original steepest descent method, the gradient of
 J(b) is computed directly from the eigenvector v, while in our method, the variation
 Ab is computed directly from Av, which is chosen as a descent direction.

 The numerical examples show the feasibility and convergence of our algorithm.
 On one side, it works well independently in some cases, where the objective is de
 creased below 1 /6 of its initial value. The final results obtained from a constant initial
 structure and a centered defect initial structure show a roughly consistent design but
 subtle differences. On the other side, our algorithm can restart the optimization if the
 gradient descent process stagnates at some stage because of the bound operator. It
 is shown that this algorithm works better than the gradient descent method in some

This content downloaded from 128.210.126.199 on Wed, 21 Apr 2021 12:50:24 UTC
All use subject to https://about.jstor.org/terms



 2202 YIQI GU AND XIAOLIANG CHENG

 special cases, though some other approaches like disturbation may also be able to deal
 with the stagnation.

 It should be noticed that one weakness of the algorithm derived in this paper is
 the successively singular coefficient matrices Mk, causing the solution of (3.5) away
 from the desired Δ6, thus leading to a lower and lower convergence rate or even
 an extrema. Another weakness is the case-to-case property of this algorithm, which
 causes its limited generalization. After all, it applies to the specific objective (2.6),
 which can be intuitively linked to Rayleigh quotient property, then be transformed to
 the variant.
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