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a b s t r a c t 

Recommending system is a popular tool in many commercial or social platforms which finds interest- 

ing products for users based on their preference history. Predicting the ratings of items, such as movies, 

plays an essential role in the recommending system. In this context, we develop a new type of latent 

factor models by attaching weights to the entries of the incomplete ratings matrix. The weights are com- 

puted after estimating the user/item mean errors caused by the basic SVD model under the low-rank 

assumption on the ratings matrix. To accelerate the optimization process of our proposed models and 

other existing SVD-type models, a special design of the initial guess is suggested. In the experiments 

on real-world datasets, the proposed weighted models outperform other SVD-type methods, and the us- 

age of the special initial guess improves the optimization significantly, obtaining lower MRSEs within 

fixed number of iterations, in comparison with the random initial guess. Furthermore, artificially noised 

datasets are taken to evaluate the methods, where the weighted models still perform better than other 

SVD-type models, implying their effectiveness and robustness in noised environment. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Recommending system (RS) is widely utilized in E-commerce

ervice, social media and entertainment applications to help to find

he most interesting stuff for users ( Breese, Heckerman, & Kadie,

998; Leskovec, Rajaraman, & Ullman, 2014; Sarwar, Karypis, Kon-

tan, & Riedl, 20 0 0; Su & Khoshgoftaar, 20 09; Walczak, 20 03 ). For

xample, in movie websites, RS usually collects and analyzes the

istorical behaviors (e.g. rating a movie) of users and then pre-

icts the unknown preference of them, by which the most in-

eresting movies for each individual user can be recommended

 Marovic, Mihokovic, Miksa, Pribil, & Tus, 2011 ). In many situations,

he multi-class rating system is provided, allowing users to rate

ach item from score 1.0 (the least interesting) to 5.0 (the most

nteresting). Mostly, compared to the huge amount of total items,

he number of rated items from a user is highly limited, causing

he whole dataset sparse. The task of RS is to predict the rating

core from each user to the items not rated so far by analyzing the

hole data of existed ratings. 

Collaborative filtering (CF) is a popular group of methods em-

loyed to build effective RS. Traditional CF techniques ( Breese
∗ Corresponding author at: Department of Mathematics, Purdue University, 150 

. University Street, West Lafayette, IN 47907, USA. 

E-mail addresses: gu129@purdue.edu (Y. Gu), yang1023@purdue.edu (X. Yang), 
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t al., 1998; Chee, Han, & Wang, 2001; Frmal & Lecron, 2017;

elville, Mooney, & Nagarajan, 2002; Sarwar, Karypis, Konstan, &

iedl, 2001; Su & Khoshgoftaar, 2006 ) are mostly memory-based,

hich perform the prediction by computing similarity between

sers or items and deploying weighted average. Such CF systems

an be simply implemented and developed. However, they exces-

ively rely on human ratings and perform worse if the dataset is

ighly sparse or of large scale. Another category of CF is model-

ased ( Delporte, Karatzoglou, Matuszczyk, & Canu, 2013; Gao,

ang, Hu, & Liu, 2015; Ju & Xu, 2013; Koren, 2008; Salah, Rogovschi,

 Nadif, 2016; Wang & Ke, 2014; Xu, Bu, Chen, & Cai, 2012 ). They

redict the preference by building and learning a model, where

he techniques of data mining or machine learning are usually em-

loyed. Model-based CF is more flexible and effective for the large-

cale and sparse dataset and performs the prediction more accu-

ately. More information about memory and model-based CF can

lso be seen in Su and Khoshgoftaar (2009) . 

The CF methods based on latent factor models ( Agarwal & Chen,

009; Chen et al., 2017; Cheng, Ding, Zhu, & Kankanhalli, 2018;

hamb & Fang, 2017; Luo, Sun, Wang, Li, & Shang, 2017; Luo, Zhou,

i, & Shang, 2017; Sun, Guo, Zhang, & Xu, 2017 ) characterize users

nd items in a specific latent space, and describe the rating by the

orresponding inner product. One popular latent factor model is

he Singular Value Decomposition (SVD), which alleviate the spar-

ity problem, represents users and items by the vectors in R 

s and

omputes the rating by vector inner product, and is widely adopted

https://doi.org/10.1016/j.eswa.2019.112885
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
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+ λ(‖ p u ‖ + ‖ q ‖ + ‖ b u ‖ + ‖ b ‖ ) . (7) 
in rating prediction ( Yang, Yu, Liu, Nie, & Wang, 2016 ). Biased SVD

( Koren, 2008 ) improved SVD by introducing user and item bias

terms. SVD ++ ( Koren, 2008; Koren & Bell, 2015 ) extended the bi-

ased SVD model by integration of implicit feedback information

to get more accurate results/enhance accuracy. Some other tech-

niques use the information of not only the ratings matrix but also

the user/item-content. Auto SVD/SVD ++ ( Zhang, Yao, & Xu, 2017;

Zhang, Yao, Xu, Wang, & Zhu, 2017 ) generalized contractive auto-

encoder paradigm ( Rifai, Vincent, Muller, Glorot, & Bengio, 2011 )

into SVD/SVD ++ , hence leverage implicit user feedback and make

more accurate recommendations. CFSVD-TF ( Wang, Han, Miao, &

Zhang, 2019/05 ) found the implicit feature space by SVD and built

the model by introducing trust factors. Another two-level SVD al-

gorithm ( Cui et al., 2018 ) improved the performance by using time

information and utilizing direct SVD on the ratings matrix. 

In a multi-class rating environment (e.g. scored rating between

1.0 and 5.0), the SVD-type latent factor models are essentially per-

forming low-rank decomposition on the incomplete user-item rat-

ings matrix by solving a model optimization. Practically, the loss

function has a great many local extreme points that impede the

use of standard optimization solvers with random initial guesses.

It motivates us to design a specifical initial guess to accelerate the

optimization process 

On the other hand, the existing of noise is quite common in

raw ratings. For example, irrational or disruptive users may score

negatively on commonly good items. Another possible reason is

some rating scores are not only from users’ intrinsic preference but

also the influence of the RS on the users ( Sinha, Gleich, & Ramani,

2016 ). In this point, it can also be claimed not all the ratings are

equally meaningful and important to the RS. Hence, the raw rat-

ings collected through the user interface are often with noise and

may not reflect all users’ interest truthfully, which fails to maintain

the significant low-rank property. The traditional SVD-type mod-

els rely on the low-rank assumption on the ratings matrix and

therefore might perform unsatisfactorily on the highly noisy data.

Hence we are encouraged to distinguish users/items by weighting

technique, strengthening the influence of information from “good”

users/items. 

In this work, we first review some existing SVD-type models

and then introduce an approach to generate decent initial guesses

for the optimization process ( Section 2 ). The strategy is to applying

sparse SVD solvers to the normalized ratings matrix. Moreover, to

reduce the impact of noise and unreliable ratings, we modify the

SVD model by adding non-negative weights to each existed rat-

ing entry according to their importance of maintaining the low-

rank property ( Section 3 ). The choice of weights can be either

user-based or user-item-based. All the proposed models are tested

on three public accessible datasets (MovieLens 100k, MovieLens

1M and MovieTweetings) in comparison with biased SVD, SVD ++ ,

AutoSVD and AutoSVD ++ ( Section 4 ) The experiments show the

proposed weighted models outperform other models in improving

computational efficiency, obtaining more accurate predictions, and

its robustness for noised data. The discussion and conclusion are

presented in the end ( Section 5 ). 

Compared with previous models in this direction, our contribu-

tions of this paper are summarized as follows: 

• The starting point of iteration influences the computation effi-

ciency and accuracy for the prediction of SVD-type models. To

the best of our knowledge, this work is the first attempt to pro-

vide approach for initial point computation. The proposed ini-

tial guess computation method in Section 2 helps to start the

iteration from an appropriate initial guess and attains a lower

local minimum within a fixed number of iterations, hence im-

proves the computational efficiency. 
• The proposed weighted SVD-type latent factor models add

three different types of weights to each existed rating according

to their significance of maintaining the low-rank property that

the SVD method relies on, leading to further improvements in

prediction accuracy. 

• As noise frequently occurs in rating data, the proposed

weighted models leverage the bad influence of noise and un-

reliable ratings, and thus naturally providing prediction more

robust to noise than previous work. 

. SVD-type latent factor models 

.1. Model description 

.1.1. SVD 

The SVD-type model is one of the basic latent factor models

hich follow the idea of truncated singular value decomposition

n matrix computation. Let U and I be the total number of users

nd items in the current dataset, and all users (items) are indexed

rom 1 to U ( I ). Denote r ui be the rating score given by user u on the

tem i . If the user u has not rated item i , we say r ui is unknown.

et K be the set consisting of all pairs ( u, i ) such that r ui is known.

ow { r ui } forms a ratings matrix by taking users as rows and items

s columns. For most practical dataset, majority of the user-item

atings matrix is filled with unknown entries, which need to be

redicted. The predicted value for r ui is denote by ˆ r ui . Also, let s be

 positive integer representing the number of latent factors. The

ain framework of the (basic) SVD model is characterizing r ui by

he inner product of a user-related s -vector p u and a item-related

 -vector q i , or 

˜ 
 ui = p T u q i . (1)

here p u , q i ∈ R 

s are determined by the following optimization

roblem, 

in 

p u ,q i 
J SVD := 

∑ 

(u,i ) ∈K 
(r ui − p T u q i ) 

2 + λ(‖ p u ‖ 

2 + ‖ q i ‖ 

2 ) , (2)

or 1 ≤ u ≤ U , 1 ≤ i ≤ I . And λ> 0 is a regularization constant avoid-

ng overfitting. 

If gradient-type methods are utilized to solve the optimization,

ne may need the following expressions of gradients, 

∂ J SVD 

∂ p u ′ 
= 2 

∑ 

(u ′ ,i ) ∈K 

(
−(r u ′ i − p T u ′ q i ) q i + λp u ′ 

)
, (3)

∂ J SVD 

∂q i ′ 
= 2 

∑ 

(u,i ′ ) ∈K 

(
−(r ui ′ − p T u q i ′ ) p u + λq i ′ 

)
. (4)

hen obtaining p u and q i , the predicted ratings ˆ r ui can be evalu-

ted by (1) . 

.1.2. Biased SVD 

Moreover, if the data is shifted by the overall average rating 

:= 

∑ 

(u,i ) ∈K 
r ui / |K| , (5)

nd scalar baselines b u and b i are attached to user u and item i

n the SVD model, then we directly have the following biased SVD

odel ( Koren, 2008 ) 

˜ 
 ui = μ + b u + b i + p T u q i . (6)

here b u , b i , p u , q i are determined by the following optimization

roblem, 

min 

 u ,b i ,p u ,q i 

J bSVD := 

∑ 

(u,i ) ∈K 
(r ui − μ − b u − b i − p T u q i ) 

2 

2 2 2 2 

i i 
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.1.3. SVD ++ 

The model can be further improved by introducing users’ im-

licit feedback. The most basic criteria for implicit feedback is

hether a user gives a rating to a specific item, regardless of

he rating score. By virtue of such information, the SVD ++ model

 Koren, 2008 ) can be formulated by 

˜ 
 ui = μ + b u + b i + q T i 

( 

p u + |K u | − 1 
2 

∑ 

(u, j) ∈K 
y j 

) 

. (8)

here K u is the set consisting of all the items rated by user u ,

nd b u , b i , p u , q i , y i are determined by the following optimization

roblem, 

min 
 u ,b i ,p u ,q i ,y i 

J SVD++ := 

∑ 

(u,i ) ∈K 

( 

r ui − μ − b u − b i − q T i 

( 

p u + |K u | − 1 
2 

∑ 

(u, j) ∈K 
y j 

) ) 2 

+ λ
(‖ p u ‖ 2 + ‖ q i ‖ 2 + ‖ b u ‖ 2 + ‖ b i ‖ 2 + ‖ y i ‖ 2 

)
, (9) 

.1.4. AutoSVD, AutoSVD ++ 

Based on the preceding biased SVD and SVD ++ , we take advan-

age of the content of items and extract the corresponding feature

ector by contractive auto-encoders ( Rifai et al., 2011 ), then the

utoSVD and AutoSVD ++ models ( Zhang, Yao, & Xu et al., 2017 )

an be built as 

˜ 
 ui = μ + b u + b i + p T u (β · CAE (c i ) + ε i ) , (10)

nd 

˜ 
 ui = μ + b u + b i + 

( 

p u + | R (u ) | − 1 
2 

∑ 

(u, j) ∈K 
y j 

) T 

(β · CAE (c i ) + ε i ) , 

(11) 

here CAE( c i ) is the feature vector extracted from item-based con-

ent information and εi is an item-based offset vector. Different

rom SVD, biased SVD and SVD ++ , which merely take the ratings

atrix as the dataset, AutoSVD and AutoSVD ++ requires additional

nformation from the data content. 

.2. Initial guess computation 

For SVD-type models, the loss function is usually a quadratic

olynomial for each user-based or item-based vector, and a quartic

olynomial for each scalar variable. The non-convexity of the loss

unction in the admissible set determines the existence of great

umber of local minima. Taking the SVD model (1)–(2) as an ex-

mple, since the number of scalar variables is s (U + I) , it has the-

retically at most 2 s (U+ I) local minima. Starting the gradient-type

ethods from a decent initial point may accelerate the optimiza-

ion to a great extent. Actually, many advanced SVD-type mod-

ls (biased SVD, SVD ++ etc.) have a mathematically equivalent

oss function to that of the basic SVD model, but have more re-

tricted admissible sets by using different variants of the loss func-

ion. Hence performing such SVD-type models can be seen as per-

orming the basic SVD model with different initial guesses. Indeed,

tarting from an appropriate initial guess will reach to a lower lo-

al minimum within a fixed number of iterations, which will also

e shown in the experiments. Now we present an approach to

nd a decent initial guess by using direct sparse SVD solver. For

implicity, we take the SVD model (1)–(2) as an example to ex-

lain how to compute good initial p u and q i . The technique can be

lightly modified for biased SVD and SVD ++ without difficulty. 

We denote the incomplete ratings matrix by 

 = [ r ui ] 
i =1 , ... ,I 
u =1 , ... ,U ∈ R 

U×I , (12) 
lso, denote 

 = [ p 1 p 2 . . . p U ] ∈ R 

s ×U , Q = [ q 1 q 2 . . . q I ] ∈ R 

s ×I . (13)

hen (1) implies 

 ≈ P 

T Q (14) 

or all r ui where (u, i ) ∈ K. Solving (2) is equivalently looking for

ank s approximation of R . Let 

ˆ 
 = 

{
r ui − μ, (u, i ) ∈ K 

0 , (u, i ) / ∈ K 

(15) 

hich is a sparse matrix approximating R − μ by using 0 to fill the

nknown positions, and we do truncated singular value decompo-

ition on 

ˆ R by sparse SVD solvers, obtaining 

ˆ 
 ≈ U S V 

T 
, (16) 

here U ∈ R 

U×(s −1) , V ∈ R 

I×(s −1) have orthonormal columns, and

 ∈ R 

(s −1) ×(s −1) is diagonal with nonnegative entries. Now let 

ˆ 
 

∗
:= S 

1 
2 U 

T 
, ˆ Q 

∗
:= S 

1 
2 V 

T 
, (17) 

hen ( ̂  P 

∗
) T ˆ Q 

∗
is a good approximation to R − μ. Finally, let 

 

∗ = 

[√ 

μ
√ 

μ . . . 
√ 

μ
ˆ P 

∗

]
, Q 

∗ = 

[√ 

μ
√ 

μ . . . 
√ 

μ
ˆ Q 

∗

]
, (18) 

hen P 

∗ ∈ R 

s ×U , Q 

∗ ∈ R 

s ×I and ( P 

∗) T Q 

∗ is close to R . Finally we

ake p ∗u be the u th column of P 

∗ and q ∗
i 

be the i th column of Q 

∗

o be the initial guess for gradient-type method. This choice allows

s to start the searching process from a much smaller loss function

han using random generated initial guess, and hence it is more

ikely to obtain a lower solution within fixed number of iterations.

. Weighted SVD models 

.1. User-based weighted model 

In a rating dataset from the real-world, all ratings are not

qually important. Usually different users provide different con-

ribution to the dataset. For example, movie lovers probably rate

ovies seriously and frequently, thus are more likely to provide

ignificant data. Normal users rate movies out of their own pref-

rence, but are sometimes influenced by external factors. Negative

sers may give unreasonable or biased ratings, which decrease the

eliability of the dataset. This classification of users is also true for

tems. We regard all the unconvincing ratings as noise added to the

aw dataset. Therefore, all users (items) can be regarded differently

y their contribution to reliability of the dataset. Weighting strat-

gy can be employed for this goal. Specifically, a user-based scalar

eight w u can be attached to each rating term in the dataset.

ence the loss function of the SVD model (2) can be modified to

he following weighted form 

 wSVD := 

∑ 

(u,i ) ∈K 
w u (r ui − p T u q i ) 

2 + λ(‖ p u ‖ 

2 + ‖ q i ‖ 

2 ) . (19)

imilarly, the loss function of the biased SVD can be modified to 

 wbSVD := 

∑ 

(u,i ) ∈K 
w u (r ui − μ − b u − b i − p T u q i ) 

2 

+ λ(‖ p u ‖ 

2 + ‖ q i ‖ 

2 + ‖ b u ‖ 

2 + ‖ b i ‖ 

2 ) , (20) 

hich can be referred to as the weighted biased model. A normal-

zation condition is placed to the weights to balance the square

rror part and regularization part of the loss function, that is ∑ 

w u = |K| . (21) 
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Table 1 

Datasets information. 

Datasets # of users # of items # of ratings Sparcity 

MovieLens 100k 943 1660 99,973 6.39% 

MovieLens 1M 6040 3684 1,000,184 4.49% 

MovieTweetings 52,728 30,622 780,740 0.048% 
3.2. Computation of weights 

The determination of weights can be based various principles.

Specifically, when performing SVD-type models, the basic assump-

tion is the low-rank property of the ratings matrix. Indeed, the

ratings matrix from a real-world dataset usually has a low rank,

since users of similar interest probably give similar ratings on same

items, and items having similar features are more likely to receive

similar rating scores from most users. However, some noise, such

as casual or biased ratings, may lower the low-rank property, and

finally reduce the accuracy of SVD-type models. Hence our strat-

egy of setting weights is to weaken the effect of the users who

give “bad” ratings (those far away from preserving the low-rank

structure) more frequently. 

In practical implementation, we first perform the SVD model

(1)–(2) on the original dataset for once, and compute the following

entrywise absolute error 

e ui := | r ui − p T u q i | , (u, i ) ∈ K. (22)

Then the user absolute error can be evaluated by 

e u := 

( ∑ 

i ∈K u 
e ui 

) 

/ |K u | . (23)

The user absolute error reflects the degree of preserving the

low-rank structure of each user. Out of our strategy, the user hav-

ing a high user absolute error should be associated with a rela-

tively lower weight, therefore each user-based weight can be com-

puted by 

̂ w u = φ(e u ) , (24)

w u = ( ̂  w u |K| ) / ∑ 

(u,i ) ∈K ̂
 w u , (25)

where φ is a non-increasing mapping. Note the weights are scaled

in (25) according to the normalization condition (21) . After obtain-

ing the weights, the weighted models (19) and (20) can be per-

formed and the unknown ratings can be predicted by (1) and (6) . 

3.3. User-item-based weighted model 

Actually, the weighting technique can be not only be user-based

but also item-based under the principle of low-rank assumption.

We can weaken the effect of the items which are more likely to

receive “bad” ratings. Denote K i by the set consisting of all users

who have rated item i , then the item absolute error can be evalu-

ated by 

e i := 

( ∑ 

u ∈K i 
e ui 

) 

/ |K i | . (26)

and the corresponding item-based weight can be computed by 

̂ w i = φ(e i ) . (27)

Therefore, each known rating r ui can be equipped with a user-

item-based weight w ui which is computed by 

̂ w ui = 

̂ w u ̂  w i , (28)

w ui = ( ̂  w ui |K| ) / ∑ 

(u,i ) ∈K ̂
 w ui . (29)

Finally, the user-item-based weighted biased model is given

by 
 wbSVD := 

∑ 

(u,i ) ∈K 
w ui (r ui − μ − b u − b i − p T u q i ) 

2 

+ λ(‖ p u ‖ 

2 + ‖ q i ‖ 

2 + ‖ b u ‖ 

2 + ‖ b i ‖ 

2 ) , (30)

In this model, each known rating is equipped with a weight

hat depends on both the behavior of the rating user and the prop-

rty of the rated item. 

. Experiments 

.1. Datasets and noise setting 

Some experiments are implemented to test the performance

f the proposed weighted models on three public accessible

atasets, MovieLens 100k (ML-100k), MovieLens 1M (ML-1M) and

ovieTweetings (MT). MovieLens datasets are collected from the

ovieLens website ( https://movielens.org ) whose rating scores are

anged from 1 to 5, and they are widely employed to assess rec-

mmending system techniques in the recent decade. The version of

00k dataset containing about 10 5 ratings from 943 users on 1660

ovies and the 1M dataset including about 10 6 ratings of approxi-

ately 3700 movies made by 6040 users will be used in our exper-

ments. MovieTweetings is a relatively new dataset ( https://github.

om/sidooms/MovieTweetings ) which is collected from Twitter and

onsisting of about 7.8 × 10 5 ratings ranged from 1 to 10 from ap-

roximately 53,0 0 0 users for 31,0 0 0 movies. In practical imple-

entation, we first extract randomly 80% ratings from the datasets

o form the training set, and leave the rest to be the testing set.

ore information about these datasets are summarized in Table 1 .

Other than the tests on original real-world datasets, we have

mplemented tests on datasets with artificial noise to show the ro-

ustness of the models. For the preceding three datasets, we place

aussian noise to each known rating in the training set, obtaining

 modified rating score which is 

(r ui ) noised = min { max { r ui + ξ , M } , m } (31)

here ξ ∈ N (0 , σ 2 ) is a Gaussian random noise and { M, m } are

pper and lower thresholds for all ratings. In the experiments, we

et M = 5 . 9 , m = 0 . 1 for MovieLens datasets and M = 10 . 9 , m = 0 . 1

or MovieTweetings. As we know, the artificial noise will lower the

ow-rank structure of the ratings matrix. Tests on such noised data

ill directly reflect the robustness of the models for real-world

ata which has no significant low-rank property. 

.2. Error-weight mapping 

When performing the weighted models, the choice of the non-

ncreasing mapping φ is technical. In the experiments, we take 

(x ) = (M 

α
e − x α) 1 /α, (32)

here M e is the maximum of all entrywise errors. This definition

f the error-weight mapping has the following property. 

• Range: all the weights mapped from entrywise errors belongs

[0,1]; 

• Convexity: the parameter α determines the convexity of the

mapping. For 0 < α < 1, φ is convex; for α = 1 , φ is linear; for

α > 1, φ is concave. 

https://movielens.org
https://github.com/sidooms/MovieTweetings
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Table 2 

weighted RMSE for various datasets from compared models ( s = 10 ). 

Methods 

ML-100k ML-1M MT 

σ = 0 σ = 0 . 5 σ = 1 σ = 0 σ = 0 . 5 σ = 1 σ = 0 σ = 0 . 5 σ = 1 

bSVD 0.93699 0.94184 0.94886 0.90836 0.90999 0.91396 1.42292 1.42642 1.43684 

bSVD 

∗ 0.90677 0.92012 0.95710 0.85540 0.86375 0.88961 1.41645 1.42157 1.43764 

SVD ++ 0.90900 0.91902 0.94104 0.87900 0.88170 0.88820 1.42218 1.42787 1.43446 

SVD ++ 

∗ 0.90293 0.91958 0.95960 0.86102 0.86631 0.88538 1.40508 1.40925 1.42183 

ASVD – – – 0.86575 0.87349 0.90184 – – –

ASVD ++ – – – 0.86758 0.89245 0.96000 – – –

wSVD 

∗
u (α = 0 . 5) 0.87056 0.93228 0.93228 0.81067 0.82430 0.86165 1.34421 1.35462 1.37630 

wSVD 

∗
u (α = 1) 0.87829 0.89355 0.93876 0.83561 0.84544 0.87627 1.38634 1.39091 1.40698 

wSVD 

∗
u (α = 2) 0.89537 0.90855 0.94751 0.84884 0.85722 0.88448 1.41213 1.41677 1.43655 

wSVD 

∗
ui 
(α = 0 . 5) 0.83902 0.86187 0.92752 0.80131 0.81674 0.85559 1.31671 1.32941 1.35452 

wSVD 

∗
ui 
(α = 1) 0.87352 0.89005 0.93625 0.83241 0.84297 0.87368 1.38138 1.38716 1.40110 

wSVD 

∗
ui 
(α = 2) 0.89401 0.90763 0.94669 0.84821 0.85675 0.88379 1.40104 1.40552 1.41979 

 

T  

h  

l  

c  

u  

b  

u  

i  

H  

l  

d  

m  

h  

o  

t  

e

4

 

a  

b  

m  

e  

t  

s

A

R

E

 

s

4

 

a  

a  

M  

i  

f  

X  

o  

t

 

a  

t  

n  

t  

S

R

w  

i  

T  

c  

t

(

4

 

m  

w  

S  

c  

M  

i  

t  

α  

w  

a  

a

 

f  

1 https://github.com/cheungdaven/autosvdpp . 
The error-weight mapping of various α has different points.

he concave mapping with a large α > 1 place nearly equally

igh weights to ratings with small entrywise errors, but much

ower weights to those with large entrywise error. It means the

oncave weighting technique almost does not distinguish good

sers/items, but tends to greatly abandon the information from

ad users/items. Indeed, in real world it is natural that even the

sers with same interest may give different scores to a particular

tem, which means two user vectors can hardly be exactly parallel.

ence slight distortion on the low-rank structure is normal and al-

owed, that the set of good users with small mean entrywise errors

o not have to be separated too much. on the contrary, the convex

apping with a small α < 1 makes a small part of good ratings

ighly weighted, but place nearly equally low weights to the rest

f ratings. This convex weighting technique aims to mainly rely on

he information from the “best” part of users/items, and lower the

ffect of all the rest. 

.3. Algorithm 

In the experiments, we implement the proposed weighted bi-

sed SVD models with user-based weights (20) and user-item-

ased weights (30) . We denote the testing set by P . The SVD

odel (2) is performed for once in the beginning to evaluate the

ntrywise errors. For the optimization process, the sparse SVD

echnique discussed in Section 2.2 is employed. All procedures are

ummarized in Algorithm 1 . 

lgorithm 1 Algorithm for weighted biased SVD. 

equire: ratings matrix R , s , λ, α, K 

nsure: predicted ratings ̃  r ui for (u, i ) ∈ P
find initial P ∗, Q 

∗ by sparse SVD 

for k = 1 , . . . , K do 

e ui ← r ui − p T u q i 
p u ← p u + τ (e ui q i − λp u ) , q i ← q i + τ (e ui p i − λq i ) 

end for 

e u ← 

( ∑ 

i ∈K u 
e ui 

)
/ |K u | , e i ← 

( ∑ 

u ∈K i 
e ui 

)
/ |K i | 

w u ← φ(e u ;α) , w i ← φ(e i ;α) , w ui ← ( w u w i ) / 
∑ 

(u,i ) ∈K 
w u w i 

compute μ, set b u , b i , find initial P ∗, Q 

∗ by sparse SVD 

for k = 1 , . . . , K do 

e ui ← r ui − μ − b u − b i − p T u q i 
b u ← b u + τ (w ui e ui − λb u ) , b i ← b i + τ (w ui e ui − λb i ) 

p u ← p u + τ (w ui e ui q i − λp u ) , q i ← q i + τ (w ui e ui p i − λq i ) 

end for ˜ r ui ← μ + b u + b i + p T u q i for (u, i ) ∈ P 
Note in Algorithm 1 , τ is a suitable step length found by line

earch process in the gradient-type method. 

.4. Evaluation environment and metrics 

Experiments are executed on Windows operating system with

 4-core Intel Core(tm) i7-4850K Processor and 32GB of RAM. Bi-

sed SVD, SVD ++ and weighted biased SVD are performed through

atlab, during which the svds routine is utilized to do sparse SVD

n the initial guess computation. AutoSVD and AutoSVD ++ are per-

ormed by the Python codes uploaded to Github 1 ( Zhang, Yao, &

u et al., 2017 ). Thanks to the sparse data structure, the storage

ccupied when running the proposed weighted model is no larger

han 1G for all the datasets. 

Usually the mean error computed from the testing set is taken

s a metric to evaluate a recommending system. Since we have dis-

inguish users/items by adding weights in the training process, it is

atural to use weighted mean to evaluate the proposed weight-

ype models. We introduce the following weighted Root Mean

quared Error (RMSE) as the metric for the experiments, 

MSE = 

√ ∑ 

(u,i ) ∈P 
w ui (r ui − ˜ r ui ) 2 , (33) 

here the testing weights w ui can be either used-based or user-

tem-based depending on which weighted model is performed.

hey are computed by the same manner as the model weights dis-

ussed in Sections 3.2 and 3.3 , and obey the following normaliza-

ion condition, ∑ 

u,i ) ∈P 
w ui = 1 . (34) 

.5. Overall comparison 

In this section, we assess the performance of our proposed

odels with user-based weights (wSVD 

∗
u ) and user-item-based

eights (wSVD 

∗
ui 

), as well as the existing SVD-type models biased

VD (bSVD), SVD ++ , AutoSVD (ASVD), AutoSVD ++ (ASVD ++ ) for

omparison. The regularization parameters λ is set to be 0.1 for

ovieLens datasets and 0.1 for MovieTweetings. The number of

terations of the gradient descent method is fixed to be 100, af-

er which the weighted RMSE is computed. For weighted models,

= 0 . 5 , 1 , 2 correspond to the convex, linear and concave error-

eight mappings. On noise setting, Gaussian noise with σ = 0 . 5

nd 1 is added to present original datasets to create lowly noised

nd highly noised sets. 

Tables 2 and 3 show the results of RMSE for various datasets

rom compared models for s = 10 and 20. For these methods, the

https://github.com/cheungdaven/autosvdpp
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Table 3 

Weighted RMSE for various datasets from compared models ( s = 20 ). 

Methods 

ML-100k ML-1M MT 

σ = 0 σ = 0 . 5 σ = 1 σ = 0 σ = 0 . 5 σ = 1 σ = 0 σ = 0 . 5 σ = 1 

bSVD 0.93687 0.94185 0.94942 0.90830 0.90995 0.91392 1.42329 1.42679 1.43677 

bSVD 

∗ 0.90634 0.92175 0.97665 0.85375 0.86759 0.91016 1.41649 1.42198 1.44177 

SVD ++ 0.90780 0.91834 0.93962 0.87958 0.88098 0.88733 1.42481 1.42780 1.43413 

SVD ++ 

∗ 0.90380 0.92392 0.98878 0.85735 0.86532 0.88975 1.40508 1.40929 1.42326 

ASVD – – – 0.86365 0.87046 0.90755 – – –

ASVD ++ – – – 0.89162 0.93540 1.05408 – – –

wSVD 

∗
u (α = 0 . 5) 0.85026 0.87132 0.94866 0.81032 0.82947 0.88379 1.34593 1.35645 1.37897 

wSVD 

∗
u (α = 1) 0.87809 0.89398 0.95770 0.83458 0.84997 0.89755 1.38854 1.39362 1.40992 

wSVD 

∗
u (α = 2) 0.89479 0.90904 0.96693 0.84749 0.86135 0.90549 1.41470 1.42057 1.44329 

wSVD 

∗
ui 
(α = 0 . 5) 0.83985 0.86227 0.94238 0.80071 0.82089 0.87724 1.32081 1.33355 1.35834 

wSVD 

∗
ui 
(α = 1) 0.87342 0.89021 0.95498 0.83184 0.84701 0.89348 1.38342 1.38919 1.40350 

wSVD 

∗
ui 
(α = 2) 0.89343 0.90797 0.96612 0.84706 0.86070 0.90360 1.40284 1.40760 1.42285 

Table 4 

Computational time (seconds). 

Datasets ML-100k ML-1M MT 

bSVD( s = 10 ) 5.80 38.93 140.20 

bSVD( s = 20 ) 5.93 44.70 149.23 

SVD ++ ( s = 10 ) 88.52 1505.62 984.65 

SVD ++ ( s = 20 ) 140.5 2477.54 1352.99 

wSVD u (s = 10 ) 9.34 65.40 230.75 

wSVD u (s = 20 ) 9.97 77.32 250.60 

wSVD ui (s = 10 ) 9.09 65.55 231.65 

wSVD ui (s = 20 ) 10.23 76.42 247.95 
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superscript ∗ means the usage of the specifically designed initial

guess discussed in Section 2.2 (otherwise the random initial guess

is used). Comparing bSVD (SVD ++ ) with bSVD 

∗ (SVD ++ 

∗), the us-

age of proposed initial guess helps to reduce the RMSE for these

methods to some extent. Furthermore, The proposed methods pro-

duce better predictions with smaller RMSE than previous meth-

ods for all the cases, regardless of various datasets and noisy lev-

els. Specifically, the reduction of RMSE of proposed weighted-type

methods is in average 5% than the SVD ++ methods and 3% than

the bSVD, ASVD and ASVD ++ methods. We can also observe from

the tables that in these experiments the convex weight mapping

works better than the linear and concave ones. 

Table 4 compares the computational time for all the models.

The comparison of computational time is executed on Matlab plat-

form. All methods are programmed by same logic and data struc-

ture. The proposed weighted models take slightly longer while

comparable time than the bSVD models, which both greatly out-

perform the SVD ++ models in saving 10 to 100 times computa-

tional time. 

5. Discussion and conclusion 

In this work, we develop a modified SVD-type latent factor

model for rating prediction in recommending systems. Depending

on the error produced by the SVD model, specific weights are com-

puted and added to each entry of the ratings matrix, and a cor-

responding weighted loss function is built and optimized. Under

the low-rank assumption, the entries producing larger errors in the

SVD model are equipped with lower weights. In the evaluation of

weights, the concave, linear and convex non-increasing mappings

are utilized, associated with various emphasis. 

In the experiments, the proposed weighted models outperform

some existing SVD-type models for original and noised datasets

from the real world. For all types of the weighted models, that

employs user-item-based weights and convex error-weight map-

ping performs best, which implies in these datasets, the positive

contribution from “good” users/items is more significant than the
egative effect caused by bad users/items, and placing more im-

ortance on the former is a better strategy. Moreover, the exper-

ments on the artificially noised datasets indicate this weighting

echnology is robust when dealing with noise. Although the pro-

osed weights are computed based on the low-rank property on

he ratings matrix, the noised datasets with less such property can

till be handled well by the weighted models. 

The main limitation of the weighted models presented in this

ork is the lack of using the user/item aspect or content. The

hoice of weights is directly based on the entrywise error pro-

uced by the traditional SVD model, hence the effect of the meth-

ds highly relies on the effect of the traditional SVD model and the

ow-rank property of the data. The proposed weighted model may

ork worse if the ratings matrix has no low-rank property. In this

ase, taking advantage of the aspect or content feature will greatly

mprove the effect. Besides, in this work, the weighted RMSE is

aken as an evaluation metric that is less convincing in some spe-

ial cases. More experiments can be implemented by using stan-

ard metrics on both real-world and artificially noised datasets. 

The proposed weighting technique on RS can be widely studied

n the future. In our work, the model weights are labeled in term

f users and items. While for datasets with huge number of users

nd items, adopting clustering approach will greatly improve the

fficiency. We suggest the usage of cluster-based weights ( Frmal

 Lecron, 2017 ) on CF models of SVD or other types. Moreover, it

ould be interesting to find various strategies of setting weights,

uch as activity-based ( Salah et al., 2016 ), aspect-based ( Yang et al.,

016 ), feature-based ( Chen et al., 2017 ) strategies. On the other

and, the weights can be also taken as model variables and deter-

ined during the optimization (under some specific assumptions).

n this case, the loss function will become highly non-linear (be-

ause of the product of weights and latent vectors), that implies

he usage of neural network technique on the model instead of

sage of straightforward loss functions. Furthermore, it would be

nteresting and challenging to adjust the weighted models for cold

tart problem, especially the setup of weighting for new users and

tems. We anticipate that the weighted method will achieve fur-

her accuracy improvement and provide a useful tool to make rec-

mmendation. 
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