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Abstract. This paper studies deep neural networks for solving extremely large linear systems
arising from high-dimensional problems. Because of the curse of dimensionality, it is expensive to
store both the solution and right-hand side vector in such extremely large linear systems. Our idea
is to employ a neural network to characterize the solution with many fewer parameters than the size
of the solution under a matrix-free setting. We present an error analysis of the proposed method,
indicating that the solution error is bounded by the condition number of the matrix and the neural
network approximation error. Several numerical examples from partial differential equations, queue-
ing problems, and probabilistic Boolean networks are presented to demonstrate that the solutions of
linear systems can be learned quite accurately.
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1. Introduction. Linear equations appear widely in applied problems such as
partial differential equations (PDEs) and numerical optimization. In physical prob-
lems, one usually needs to compute some physical quantity, such as temperature distri-
bution and fluid velocity. Let us suppose the problem is addressed in a d-dimensional
domain \Omega \subset \BbbR d, in which a grid \Gamma is set up. A grid function u on \Gamma is thereafter intro-
duced to approximate the physical quantity. Then, after using a spatial discretization
on the problem, u is computed through the following system of linear equations,

\bfitA \bfitu = \bfitb ,(1.1)

where \bfitA \in \BbbR \widetilde M\times \widetilde N (\widetilde M, \widetilde N \in \BbbN +) is a nonsingular matrix; \bfitb \in \BbbR \widetilde M is a given vector;

\bfitu =vec(u)\in \BbbR \widetilde N is the vector representation of u.

1.1. Existing methods and difficulties. Traditional linear solvers, including
direct and iterative methods, have been extensively studied for a long time. Let
us consider the high-dimensional problem that \Omega is a d-dimensional box and (1.1)
is assembled with tensor product structure on an N \times N \times \cdot \cdot \cdot \times N (d times) grid,
where N \in \BbbN + is the degree of freedom in every dimension. A series of methods
have been developed for the linear system with tensor product structure, such as the
Krylov subspace method [31], the projection method [4], and Cayley transformation
[21]. However, for such linear systems, the numbers of equations and unknowns

\ast Submitted to the journal's Methods and Algorithms for Scientific Computing section April 1,
2022; accepted for publication (in revised form) April 27, 2023; published electronically September
21, 2023.

https://doi.org/10.1137/22M1488132
Funding: This work was supported by Hong Kong Research Grant Council GRF 12300519,

17201020, 17300021, Hong Kong Research Grant Council CRF C1013-21GF, C7004-21GF, and Joint
NSFC-RGC N-HKU76921.

\dagger School of Mathematical Sciences, University of Electronic Science and Technology of China,
Sichuan, 611731, China (yiqigu@uestc.edu.cn).

\ddagger Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
(michael-ng@hkbu.edu.hk).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2356

D
ow

nl
oa

de
d 

11
/1

3/
23

 to
 1

13
.5

4.
20

8.
89

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/22M1488132
mailto:yiqigu@uestc.edu.cn
mailto:michael-ng@hkbu.edu.hk


DNN FOR SOLVING LINEAR SYSTEMS A2357

satisfy \widetilde M = \widetilde N = Nd, which are extremely large even if d is moderately large. In
spite of some development concerning large-scale problems [3, 55, 41], the practical
performance of many existing methods is still limited by the dimension. For high-
dimensional problems with larger d, the system size Nd might exceed the machine
storage so that even the intermediate solution cannot be stored entirely in memory.

1.2. Motivations and contributions. In recent years, the theory and appli-
cations of neural networks (NNs) have been widely studied in a variety of areas,
including computer science and applied mathematics. Generally speaking, NNs are
a type of function with a nonlinear parametric structure. It has been found in a
series of literature that NNs can approximate common functions effectively. In the
pioneering work [13, 26, 6], the universal approximation theory of two-layer shallow
NNs is discussed. In recent research, quantitative information about the NN approx-
imation error was presented for various types of functions, e.g., smooth functions
[37, 34, 52, 19, 39, 50, 17, 18], piecewise smooth functions [42], band-limited func-
tions [40], and continuous functions [53, 44, 45].

One remarkable property of NNs is the capability to approximate high-dimensional
functions. Many traditional approximation structures, such as finite elements and
polynomials, suffer from the curse of dimensionality. Specifically, when approximat-
ing a function of d-dimensional variables, their error bounds will be O(J - \alpha /d), where
J is the number of free parameters and \alpha characterizes the regularity of the func-
tion. However, NNs can avoid such issues for some special function spaces. A typical
example is the Barron space, for which the NN approximation error is either indepen-
dent of d or increasing with d very slowly [5, 6, 30, 20, 16, 48, 49, 9, 18]. So far, NNs
have been applied successfully in solving high-dimensional PDEs and inverse prob-
lems [23, 43, 51, 54, 28]. For high-dimensional PDEs, one successful application is the
physics-informed neural networks (PINNs) [43]. More precisely, the PDE solution is
approximated by a general NN, which is then trained through the minimization of
the PDE residual (e.g., the PINN) in the least squares sense.

In this work, we follow the idea of NN approximation for high-dimensional func-
tions adopted in previous applications (e.g., PINNs) and propose a novel NN-based
method to solve linear systems (1.1). Specifically, we realize that in many real-world
problems, the physical quantities are continuously distributed. Our method comes
from the fact that if the physical quantity v is smooth enough in \Omega , NNs with only a
small number of parameters can approximate v with the desired accuracy. Meanwhile,
if the true solution \bfitu of (1.1) is a good approximation to v, it can also be approximated
accurately by such NNs. This allows us to take an NN \phi to characterize \bfitu with many
fewer parameters than \widetilde N = Nd. In this method, the unknown numeric vector \bfitu in
(1.1) is replaced with a vector function whose variables are NN parameters. Then the
task of solving the large linear system is transformed into solving a new small nonlin-
ear system. In the proposal, the new system is solved by a least squares method under
a deep learning framework. This approach is able to solve linear systems of very large
sizes that may be difficult for existing methods. Error analysis is also conducted for
this method, provided that the true physical quantity is in the Barron space.

Several typical problems are solved using the proposed method in numerical ex-
periments. The first problem is the tensor-structured linear system derived from
Poisson's equation using the centered finite difference scheme, in which the system
with (N,d) = (104,6) is solved effectively. We mention that our method applied to
this example is equivalent to PINNs, except for a few differences in the setting. Next,
we consider linear systems derived from Riesz fractional diffusion [27], a fractional
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A2358 YIQI GU AND MICHAEL K. NG

differential equation. Beyond PDEs, we apply our method to the discrete problem,
the overflow queuing problem [10, 11, 12], where we succeed in solving such linear
systems derived from 10 dimensions (i.e., 10 queues), while earlier work can address
at most three dimensions numerically. Finally, as the last example, we solve a 2d\times 2d

sparse system from probabilistic Boolean networks. Our method successfully solves a
problem with 100 dimensions and O(1030) nonzero entries, while previous work [33]
addresses merely 30 dimensions and O(104) nonzero entries.

1.3. Organization of the paper. This paper is organized as follows. In sec-
tion 2, we review the fully connected NNs, the conceptual NN-based method, and the
practical algorithms with gradient descent. In section 3, we estimate the error of the
approximate solution under the Barron space hypothesis. Several examples of phys-
ical problems are demonstrated in section 4 to test the performance of the proposed
method. Conclusions and discussions about further research work are provided in
section 5.

2. NN-based method. In this section, we introduce the concepts of NNs and
explain how to use NNs to approximate the solution of linear systems. In this paper,
we use bold fonts to denote matrices and vectors.

2.1. Fully connected neural network. Among the many types of NNs, the
fully connected neural network (FNN) is the most basic and commonly used in
applied mathematics. Mathematically speaking, given L \in \BbbN + and M\ell \in \BbbN + for
\ell = 1, . . . ,L - 1, where \BbbN + denotes the set of positive integers, we define the simple
nonlinear function h\ell :\BbbR M\ell  - 1\rightarrow \BbbR M\ell given by

h\ell (\bfitx \ell ) := \sigma (\bfitW \ell \bfitx \ell + \bfitb \ell ) ,(2.1)

where \bfitW \ell \in \BbbR M\ell \times M\ell  - 1 ; \bfitb \ell \in \BbbR M\ell ; \sigma (\bfity ) is a given function which is applied entrywise
to a vector \bfity to obtain another vector of the same size, called an activation function.
Common activation functions include rectified linear unit (ReLU) max\{ 0, y\} and the
sigmoidal function (1 + e - y) - 1.

Set M0 = d, the dimension of the input variable; then an FNN \phi : \BbbR d \rightarrow \BbbR is
formulated as the composition of these L - 1 simple nonlinear functions, namely

\phi (\bfitx ;\theta ) = \bfita \top hL - 1 \circ hL - 2 \circ \cdot \cdot \cdot \circ h1(\bfitx ) for\bfitx \in \BbbR d,(2.2)

where \bfita \in \BbbR ML - 1 and \theta := \{ \bfita , \bfitW \ell , \bfitb \ell : 1 \leq \ell \leq L  - 1\} denotes the set of all free
parameters. Here M\ell is called the width of the \ell th layer, and L is called the depth.
The widths and depth characterize the architecture of an FNN. So, in fixing \sigma , L, and
\{ M\ell \} L - 1

\ell =1 , the FNN architecture is completely determined, but the parameters in \theta 
are still free. In the following passage, for simplicity, we only consider the architecture
with fixed width M\ell =M for all \ell = 1, . . . ,L - 1. We use \scrF L,M,\sigma to denote the set of
all FNNs with depth L, width M , and activation function \sigma .

We can calculate the number of scalar parameters in \theta . It is clear that the input
layer with \ell = 1 has (d+ 1)M scalars, the output layer \bfita has M scalars, and other
hidden layers with \ell = 2, . . . ,L  - 1 have a total of (L  - 2)M(M + 1) scalars. So
| \theta | = (d+ 1)M +M + (L - 2)M(M + 1) = (L - 2)M2 + (d+L)M .

2.2. Problem description. Let us describe the linear system arising from d-
dimensional problems with a physical or conceptual domain \Omega . As a typical example,
we assume that \Omega is the d-dimensional unit box [0,1]d, and a Cartesian grid is set up
on \Omega . The following discussion can be easily generalized for other domain geometries
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DNN FOR SOLVING LINEAR SYSTEMS A2359

and grid settings. Suppose one aims to determine an unknown real function v(\bfitx ) for
\bfitx \in \Omega from a high-dimensional physical problem. One common way is setting a grid
on \Omega and determining v on every grid point. Specifically, we let N \in \BbbN + (the set of
positive integers) and let 0\leq x1 < \cdot \cdot \cdot <xN \leq 1 be a one-dimensional grid in [0,1]. We
use the vector of the form \bfitalpha = (\alpha 1, . . . , \alpha d), where each component \alpha i is an integer in
[1,N ], to denote a multi-index. Also, we define \Lambda = \{ \bfitalpha : 1\leq \alpha i \leq N for i= 1, . . . , d\} as
the set of all multi-indices. Then, for any \bfitalpha , the column vector \bfitx \bfitalpha := [x\alpha 1 . . . x\alpha d

]\top 

represents a Cartesian grid point in \Omega , and

\Gamma := \{ \bfitx \bfitalpha :\bfitalpha \in \Lambda \} (2.3)

is the set of all Cartesian grid points. It is clear that | \Gamma | =Nd.
We use a real number u\bfitalpha to approximate v(\bfitx \bfitalpha ). By using computational methods

(e.g., finite difference methods in solving differential equations), we can derive a linear
system concerning \{ u\bfitalpha :\bfitalpha \in \Lambda \} from the original physical problem, namely\sum 

\bfitalpha \in \Lambda 

am,\bfitalpha u\bfitalpha = bm form= 1, . . . ,\widetilde M,(2.4)

where am,\bfitalpha \in \BbbR is the coefficient of u\bfitalpha in the mth equation (cf. (1.1)) and \widetilde M is
the number of equations. Many linear systems arising from practical problems are
matrix-free such that one can directly get the value of am,\bfitalpha from \bfitalpha and m instead of
loading it from the storage. In the following discussion, we only consider the linear
systems that are matrix-free. Moreover, we assume that the right-hand side \{ bm\} can
be obtained instantly for specified m when the linear system is being solved, and we
do not need to save the entire right-hand side in the storage. For example, in solving
differential equations, \{ bm\} are the values of a given function at grid points, which

can be computed in real time for m in a small subset of \{ 1, . . . ,\widetilde M\} . This assumption
allows us to implement the memory-saving algorithm proposed in section 2.5.

2.3. A conceptual method. In most cases, the number of grid points N in
every dimension is set large for high resolution. Therefore, one difficulty of solving
(2.4) is its possibly large size Nd when d is moderately large. At the very worst,

Nd exceeds the memory limit, and even a vector in \BbbR Nd

cannot be saved entirely in
memory. For instance, if one sets N = 10 grid points in every dimension on a machine
with 32G memory, the bytes of an Nd double-precision vector will exceed the memory
limit when d\geq 10. This situation forbids many classical linear solvers, including the
matrix-free iterative methods. We will propose an NN representation of the unknowns
\{ u\bfitalpha \} , which can be viewed as an approximation of the unknown vector with fewer
free elements and hence costs much less storage.

Since the linear system (2.4) is derived from a physical problem having a smooth
unknown function v, it is expected that the unknowns \{ u\bfitalpha \} are also distributed

smoothly on \Gamma . Namely, the grid mapping \chi : \Gamma \rightarrow \BbbR Nd

defined by \chi (\bfitx \bfitalpha ) = u\bfitalpha 

is spatially smooth (it means the data \{ \bfitx \bfitalpha , u\bfitalpha \} \bfitalpha \in \Gamma can be fit by a function with
few high-frequency components). Thanks to the good approximation property for
high-dimensional functions (see, e.g., [30, 48, 49, 9, 18, 45, 36, 46, 47]), NNs can be
employed to serve as the functioning of \chi . Specifically, we introduce an NN \phi :\BbbR d\rightarrow \BbbR 
and let \phi (\bfitx \bfitalpha ;\theta ) be an approximation of u\bfitalpha for all \bfitalpha \in \Lambda . By this setting, the linear
system (2.4) can be formulated into\sum 

\bfitalpha \in \Lambda 

am,\bfitalpha \phi (\bfitx \bfitalpha ;\theta ) = bm form= 1, . . . ,\widetilde M,(2.5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

3/
23

 to
 1

13
.5

4.
20

8.
89

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



A2360 YIQI GU AND MICHAEL K. NG

where the NN parameter set \theta is the unknown. Note that (2.5) is actually a nonlinear
system of equations due to the nonlinear structure of NNs. And the number of un-
knowns | \theta | =O(M2L+Md) is essentially different from Nd, the number of unknowns
of the original linear system (2.4). In high-dimensional cases, the former number can
be much smaller (see Remark 3.1).

For simplicity of notation, we can also formulate (2.4) and (2.5) as a matrix-vector
form. Without loss of generality, we assume the unknowns \{ u\bfitalpha \} in (2.4) are ordered
lexicographically in a column vector, namely

\bfitu := [u(1,1,...,1) u(1,1,...,2) \cdot \cdot \cdot u(N,N,...,N)]
\top \in \BbbR Nd

,(2.6)

and we let

\bfitA :=

\left[   a1,(1,1,...,1) a1,(1,1,...,2) \cdot \cdot \cdot a1,(N,N,...,N)

...
...

. . .
...

a\widetilde M,(1,1,...,1)
a\widetilde M,(1,1,...,2)

\cdot \cdot \cdot a\widetilde M,(N,N,...,N)

\right]   \in \BbbR \widetilde M\times Nd

,(2.7)

\bfitb := [b1 \cdot \cdot \cdot b\widetilde M ]\top \in \BbbR \widetilde M ;(2.8)

then (2.4) can be written as

\bfitA \bfitu = \bfitb .(2.9)

Similarly, we let

\bfitphi (\theta ) :=
\bigl[ 
\phi (\bfitx (1,1,...,1);\theta ) \phi (\bfitx (1,1,...,2);\theta ) \cdot \cdot \cdot \phi (\bfitx (N,N,...,N);\theta )

\bigr] \top \in \BbbR Nd

;(2.10)

then (2.5) can be written as

\bfitA \bfitphi (\theta ) = \bfitb .(2.11)

Now we solve the nonlinear system (2.11) with O(M2L+Md) unknowns instead
of the original linear system (2.9) with Nd unknowns. And the vector \bfitphi (\theta ) is an
approximation of the original solution vector \bfitu . Usually, the system (2.11) does not
have an exact solution \theta . So we will find the least squares solution of (2.11) through
the following optimization framework:

min
\theta 

L(\theta ) =
1\widetilde M \| \bfitA \bfitphi (\theta ) - \bfitb \| 22.(2.12)

The loss function L can be decreased via gradient descent methods under the NN
learning framework.

To measure the error vector of large linear systems in a fair way, one usually uses
the \ell 2-norm, which does not increase with the vector size, instead of the Euclidean
norm \| \cdot \| 2. Specifically, for \bfitu \in \BbbR Nd

, we define

\| \bfitu \| \ell 2 :=
\sqrt{} \sum 

\bfitalpha \in \Lambda | u\bfitalpha | 2

Nd
=N - d/2\| \bfitu \| 2.(2.13)

If a feasible solution \theta 0 of (2.12) is found, it satisfies L(\theta 0) =
1\widetilde M \| \bfitA \bfitphi (\theta 0) - \bfitb \| 22,

and then the error between \bfitphi (\theta 0) and the true solution \bfitu of (2.9) is estimated by

\| \bfitphi (\theta 0) - \bfitu \| \ell 2 \leq N - d/2\| \bfitphi (\theta 0) - \bfitu \| 2 \leq N - d/2\| \bfitA  - 1\| 2\| \bfitA (\bfitphi (\theta 0) - \bfitu )\| 2(2.14)

=N - d/2\| \bfitA  - 1\| 2\| \bfitA \bfitphi (\theta 0) - \bfitb \| 2 \leq \| \bfitA  - 1\| 2
\sqrt{} 

L(\theta 0),

provided that \bfitA is square (\widetilde M = Nd) and invertible. Therefore, the above method
finds an approximate solution with the error bounded by the norm of inverse matrix
and the resulting minimized loss.
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DNN FOR SOLVING LINEAR SYSTEMS A2361

2.4. Nonunique solutions. If the linear system has more than one solution,
the optimization (2.12) may not locate the particular solution we are looking for. One
typical problem is the computation of the nontrivial solutions of homogeneous systems.
For example, the eigenvectors of \bfitA can be computed through (\lambda \bfitI  - \bfitA )\bfitu = 0 given
the eigenvalue \lambda . Another example is the computation of probability distribution in
the overflow queuing problem [10, 11].

Now we assume that the linear system

\bfitA \bfitu = 0(2.15)

admits nontrivial solutions, and the nullspace is exactly one-dimensional. If we solve
(2.15) via the unconstrained optimization (2.12), sometimes the trivial solution \bfitu = 0
will be obtained. For instance, due to the implicit regularization of NNs [8], gradient
descent in deep learning will probably converge to the smoothest solution, i.e., the
zero solution. As we do not wish to admit the solution \bfitu = 0, we set constraints on
the solution. One simple way is requiring \| \bfitu \| p = 1 with some p \in [1,\infty ], and then
following (2.12) a penalized optimization for (2.15) is given by

min
\theta 

L(\theta ) =
1\widetilde M \| \bfitA \bfitphi (\theta )\| 22 + \varepsilon  - 1 (\| \bfitphi (\theta )\| p  - 1)

2
,(2.16)

where \epsilon > 0 is a penalty parameter.
A simpler way is fixing one component of \bfitu , say u\bfitalpha 0 = 1 for some multi-index \bfitalpha 0,

if u\bfitalpha 0
is known to be nonzero in advance. In this case, the penalized optimization for

(2.15) is as follows:

min
\theta 

L(\theta ) =
1\widetilde M \| \bfitA \bfitphi (\theta )\| 22 + \varepsilon  - 1 (\phi (\bfitx \bfitalpha 0 ;\theta ) - 1)

2
.(2.17)

2.5. Mini-batch gradient descent algorithm. We now describe a class of
practical algorithms for the optimization of (2.12). Algorithms for solving (2.16) and
(2.17) can be derived in similar ways.

We rewrite \bfitA row-wise as follows:

\bfitA = [\bfita 1 \cdot \cdot \cdot \bfita \widetilde M ]\top ,(2.18)

where \bfita k \in \BbbR Nd

is a row of \bfitA for k = 1,2, . . . ,\widetilde M . Then the optimization (2.12) can
be rewritten as

min
\theta 

L(\theta ) =
1\widetilde M

\widetilde M\sum 
k=1

| \bfita \top 
k \bfitphi (\theta ) - bk| 2.(2.19)

To decrease L, a gradient descent method will update \theta in every iteration by

\theta \leftarrow \theta  - \tau \nabla \theta L(\theta )(2.20)

with the gradient

\nabla \theta L(\theta ) =
2\widetilde M

\widetilde M\sum 
k=1

\bigl( 
\bfita \top 
k \bfitphi (\theta ) - bk

\bigr) 
\cdot \bfitJ [\bfitphi (\theta )]\top \bfita k,(2.21)

where

\bfitJ [\bfitphi (\theta )] =
\bigl[ 
\nabla \theta \phi (\bfitx (1,1,...,1);\theta )\nabla \theta \phi (\bfitx (1,1,...,2);\theta ) . . . \nabla \theta \phi (\bfitx (N,N,...,N);\theta )

\bigr] \top 
(2.22)

is the Jacobian matrix of \bfitphi (\theta ) and \tau > 0 is some adaptive learning rate.
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A2362 YIQI GU AND MICHAEL K. NG

However, it is sometimes undesirable to use all Nd terms in (2.21) due to compu-
tational expense. So, in practice, one can use mini-batch gradient descent by selecting
a small batch of all terms for training. More precisely, in every iteration, a small sub-
set \scrS is selected from \{ 1, . . . ,\widetilde M\} according to some principles (i.e., random sampling),
and \theta is then updated by

\theta \leftarrow \theta  - \tau \nabla \theta L\scrS (\theta ),(2.23)

where L\scrS (\theta ) = 1
| \scrS | 
\sum 

k\in \scrS | \bfita \top 
k \bfitphi (\theta )  - bk| 2. This algorithm is known as mini-batch

gradient descent and is shown in Algorithm 1.
We remark that for linear systems with moderately small sizes, choosing \scrS =

\{ 1, . . . ,\widetilde M\} is tolerable in the sense of computational cost. In this case, Algorithm 1
computes not only the matrix-vector products but also the NN-related quantities \bfitphi (\theta )
and \bfitJ [\bfitphi (\theta )]. Therefore, this method might be computationally more expensive than
traditional iterative methods, which only conduct matrix-vector multiplications, for
small-scale linear systems.

However, Algorithm 1 is able to address very large scale linear systems that tra-
ditional methods may not handle. On the one hand, in every iteration, we choose a
small subset (indexed by \scrS ) of all equations for computation, so only those matrix
rows and vector entries that are necessary for the current batch are assessed. We do
not need to save the entire matrix or vector in memory (especially in the case that
\bfitA is matrix-free and bk can be computed in real time for any k). On the other hand,
to save the intermediate solution, it suffices to save \theta in memory, whose size can be
much smaller than the number of entries of \bfitu . And we only need to compute a few
entries of \bfitphi (\theta ) at the position where \bfita k is nonzero, rather than the entire \bfitphi (\theta ).

The complexity of every iteration in the while-loop can be estimated. For a spe-
cial problem, the dimension d is always fixed, so we do not involve it in the estimation.
In usual situations, each bk can be evaluated with complexity that is independent of L,
M , and N (e.g., evaluating a given function at some grid point), so the evaluation of
bk for all k \in \scrS costs O(| \scrS | ) FLOPS. Next, we use Nnz to denote the maximal number

of nonzero entries of \bfita k for all k \in \{ 1, . . . ,\widetilde M\} . For example, the matrix derived from
the centered finite difference scheme on Poisson's equation satisfies Nnz = 2d+1 (see
section 4.1). By a simple calculation, we can derive that it costs O(LM2) FLOPS
to compute \phi (\bfitx ;\theta ) or \nabla \theta \phi (\bfitx ;\theta ) for each point \bfitx \in \BbbR d, namely doing forward and
back propagations of NNs. Then the complexity of computing the vector \bfitphi (\theta ) or

Algorithm 1 NN-based mini-batch gradient descent to solve the linear system
\bfitA \bfitu = \bfitb 
Require: hyperparameters L, M , \sigma , \{ \tau i\} ; initial guess \theta 0.
Output: an approximate solution \bfitphi (\theta )\approx \bfitu .

initialize \phi (x;\theta )\in \scrF L,M,\sigma with \theta \leftarrow \theta 0
i\leftarrow 1
while stopping criterion is not satisfied do

generate \scrS \subset \{ 1, . . . ,\widetilde M\} 
evaluate bk for k \in \scrS 
\theta \leftarrow \theta  - 2\tau i

| \scrS | 
\sum 

k\in \scrS 
\bigl( 
\bfita \top 
k \bfitphi (\theta ) - bk

\bigr) 
\cdot \bfitJ [\bfitphi (\theta )]\top \bfita k

i\leftarrow i+ 1
end while
return \bfitphi (\theta )
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DNN FOR SOLVING LINEAR SYSTEMS A2363

the matrix \nabla \theta \bfitphi (\theta ) is O(| \theta | LM2) = O(L2M4). Hence, the complexity of computing
\bfita \top 
k \bfitphi (\theta ) and \nabla \theta \bfitphi (\theta )

\top \bfita k for all k \in \scrS is O(| \scrS | NnzL
2M4). Therefore, every iteration

in the while-loop costs O(| \scrS | NnzL
2M4) FLOPS.

It is worth mentioning that the optimization (2.12) can also be solved by other
mini-batch gradient-based optimizers (e.g., Adam [29]). The algorithms using these
optimizers can be developed like Algorithm 1. Besides, we remark that the proposed
method is not limited to linear systems with tensor product structures. In Algo-
rithm 1, \bfitA is a general sparse matrix. We do not require \bfitA to have any more special
structures (e.g., banded or Toeplitz matrices). This is essentially different from some
existing methods for large-scale linear systems that rely on special properties of the
matrix.

3. Error analysis. We will give an error analysis of the proposed method in this
section. The method is developed based on the approximation property of NNs for
smooth functions. Therefore, the analysis should depend on the regularity hypothesis
of the target function v. A series of recent literatures [37, 34, 52, 19, 39, 50, 17, 42,
40, 53, 44, 45] have developed many results of the NN approximation theory. Here we
consider the NN approximation for Barron-type functions, which is studied extensively
in [20, 16, 48, 49, 9, 18]. The authors show that the approximation error of two-layer
FNNs for Barron-type functions is independent of the dimension or increases with it
very slowly, hence overcoming the curse of dimensionality. Among various types of
Barron spaces, we specifically use the definition described in [18], which corresponds
to infinitely wide two-layer ReLU FNNs. The definition and properties of the Barron
space/functions will be introduced in this section. Without loss of generality, it is still
assumed that \Omega = [0,1]d in the following discussion.

As discussed in the section 2.1, the class of two-layer (i.e., L = 2) ReLU FNNs
can be reformulated as follows:

\scrF 2,M,ReLU =

\Biggl\{ 
\phi : \phi (\bfitx ) =

1

M

M\sum 
i=1

ai\sigma (\bfitb 
\top 
i \bfitx + ci) \forall (ai,\bfitb i, ci)\in \BbbR \times \BbbR d \times \BbbR 

\Biggr\} 
.(3.1)

Without ambiguity, we specify \sigma (y) =max\{ 0, y\} being the ReLU activation function
throughout this section.

We consider functions f\pi :\BbbR d\rightarrow \BbbR that admit the following representation:

f(\bfitx ) =

\int 
\Omega \prime 

a\sigma (\bfitb \top \bfitx + c)\pi (da,d\bfitb ,dc) =\BbbE \pi [a\sigma (\bfitb 
\top \bfitx + c)] \forall \bfitx \in \BbbR d,(3.2)

where \Omega \prime =\BbbR \times \BbbR d\times \BbbR and \pi is a probability distribution on (\Omega ,\Sigma \Omega \prime ), with \Sigma \Omega \prime being
a Borel \sigma -algebra on \Omega \prime . This representation can be seen as a continuum analogue of
the two-layer ReLU FNNs in \scrF 2,M,ReLU as M \rightarrow \infty . We remark that in general, there
are more than one \pi 's such that (3.2) is satisfied.

Now let us introduce the Barron space and its norm with respect to \scrF 2,M,ReLU.
For functions that admit the representation (3.2), its Barron norm is defined as

\| f\| \scrB := inf
\pi 

\biggl( \int 
\Omega \prime 

a2(\| \bfitb \| 1 + | c| )2\pi (da,d\bfitb ,dc)
\biggr) 1/2

= inf
\pi 

\bigl( 
\BbbE \pi [a

2(\| \bfitb \| 1 + | c| )2]
\bigr) 1/2

,

(3.3)

where the infimum is taken over all \pi such that (3.2) holds for all \bfitx \in \BbbR d. The infimum
of the empty set is considered as +\infty . The set of all functions with finite Barron norm
is denoted by \scrB . Note that \scrB equipped with the Barron norm is shown to be a Banach
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A2364 YIQI GU AND MICHAEL K. NG

space that is called a Barron space [18]. Some examples of Barron functions are
given in [6], including Gaussian density, positive definite functions, smooth functions
with high-order derivatives, etc. (see [18] for a mathematical connection between the
Barron definitions in [6] and in this paper). The following result characterizes the
approximation error of NNs in \scrF 2,M,ReLU for functions in \scrB .

Lemma 3.1 (see [16, Theorem 12]). For any f \in \scrB and any M \in \BbbN +, there exists
a two-layer ReLU FNN \phi in \scrF 2,M,ReLU such that

\| f  - \phi \| L\infty ([0,1]d) \leq 4\| f\| \scrB 

\sqrt{} 
d+ 1

M
.(3.4)

However, the solution of the linear system is a grid function defined merely at
the set of grid points \Gamma rather than a continuous domain. Therefore, we define the
following norm for grid functions based on the above Barron norm; namely, for any
\bfitu \in \BbbR Nd

,

\| \bfitu \| \scrB ,\Gamma := inf \| f\| \scrB ,(3.5)

where the infimum is taken over all f \in \scrB such that f(\bfitx \bfitalpha ) = u\bfitalpha for all\bfitalpha \in \Lambda . Briefly,
\| \bfitu \| \scrB ,\Gamma is the minimal Barron norm among all Barron functions that interpolate \bfitu 

at \Gamma . Since \Gamma is finite, there always exists some C\infty (\BbbR Nd

) function with a compact
support that interpolates \bfitu at \Gamma , which is a Barron function (see [6]). So the infimum
in (3.5) will never be taken on the empty set. And it is trivial to show that (3.5) is a
well-defined norm.

Now let us consider our method, i.e., the NN-based minimization (2.12). The
following result shows that the error of our proposed method is bounded by the
product of the condition number of the matrix and the NN approximation error.
Recall that \| \cdot \| \ell 2 is defined by (2.13).

Theorem 3.2. Suppose \bfitA in (2.12) is square and invertible. Let \theta \ast be a mini-
mizer of (2.12) with \phi being an FNN of depth L and width M . Let \bfitu be the solution
of the linear system (2.9). Then it satisfies

\| \bfitphi (\theta \ast ) - \bfitu \| \ell 2 \leq 4\kappa (\bfitA )\| \bfitu \| \scrB ,\Gamma 

\sqrt{} 
d+ 1

M
,(3.6)

where \kappa (\bfitA ) := \| \bfitA \| 2\| \bfitA  - 1\| 2 is the condition number of \bfitA .

Proof. Let \~v \in \scrB be the function taking the infimum in (3.5). Then, by Lemma
3.1, there exists some \theta \prime such that \phi (x;\theta \prime ) satisfies

\| \~v(x) - \phi (x;\theta \prime )\| L\infty (\Omega ) \leq 4\| \~v\| \scrB 

\sqrt{} 
d+ 1

M
.(3.7)

Similar to (2.6), we denote

\~\bfitv := [\~v(\bfitx (1,1,...,1)) \~v(\bfitx (1,1,...,2)) \cdot \cdot \cdot \~v(\bfitx (N,N,...,N))]
\top \in \BbbR Nd

.(3.8)

Since \theta \ast is the minimizer of (2.12), we have

\| \bfitphi (\theta \ast ) - \bfitu \| 2 \leq \| \bfitA  - 1\| 2\| \bfitA \bfitphi (\theta \ast ) - \bfitb \| 2 \leq \| \bfitA  - 1\| 2\| \bfitA \bfitphi (\theta \prime ) - \bfitb \| 2(3.9)

\leq \| \bfitA  - 1\| 2\| \bfitA \| 2\| \bfitphi (\theta \prime ) - \bfitu \| 2 = \kappa (\bfitA )\| \bfitphi (\theta \prime ) - \bfitu \| 2.
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DNN FOR SOLVING LINEAR SYSTEMS A2365

Noting that \~v(\bfitx \bfitalpha ) = u\bfitalpha for all \bfitalpha \in \Lambda , we have

\| \bfitphi (\theta \prime ) - \bfitu \| 2 = \| \bfitphi (\theta \prime ) - \~\bfitv \| 2 \leq Nd/2\| \bfitphi (\theta \prime ) - \~\bfitv \| \infty \leq 4Nd/2\| \~v\| \scrB 

\sqrt{} 
d+ 1

M
,(3.10)

where the NN approximation (3.7) is used. Then (3.6) directly follows (3.9), (3.10),
and the fact that \| \bfitphi (\theta \ast ) - \bfitu \| \ell 2 =N - d/2\| \bfitphi (\theta \ast ) - \bfitu \| 2.

Remark 3.1. We can estimate how wide a two-layer NN should be to obtain
acceptable accuracy \epsilon under Theorem 3.2. As a typical example, we consider the linear
system derived from the centered finite difference method in solving a d-dimensional
Poisson's equation (see section 4.1). Supposing the finite difference scheme has a
pth order truncation error, then it can be proved that \kappa (\bfitA ) \leq CNp, where C is
independent of d and N . From (3.6), it suffices to let M \geq 16C2N2p\| u\| 2\scrB ,\Gamma (d+1)/\epsilon 2.
In this case, the number of unknowns | \theta | = (d + 2)M \sim O(N2p\| u\| 2\scrB ,\Gamma d

2/\epsilon 2). This

number can be compared with Nd, the number of unknowns in the original linear
system (2.4). Supposing \| u\| \scrB ,\Gamma only increases with d mildly, then | \theta | is less than Nd

if d> 2p, and their difference is much more significant as d increases. This implies our
method contains fewer unknowns than traditional linear solvers in high-dimensional
problems.

Note that the error bound (3.6) involves the norm \| \bfitu \| \scrB ,\Gamma and the condition
number \kappa (\bfitA ), which both depend on d and N . But the relations are usually implicit.
For \| \bfitu \| \scrB ,\Gamma , it is small if \bfitu has a small interpolant in the sense of the Barron norm.
And one can infer from [6] that a function has a small Barron norm if its Fourier
transform decays to zero quickly as the frequency increases. Roughly speaking, such
functions have ``smooth"" images. Consequently, we can simply conclude that \| \bfitu \| \scrB ,\Gamma 

is small if the d-dimensional mesh of \bfitu looks smooth. This is usually true in physical
problems because \bfitu is an approximation of a smooth physical function. However, we
do not have an explicit formula to estimate \| \bfitu \| \scrB ,\Gamma for specific problems.

In Theorem 3.2, we specify \theta \ast as the global minimizer of (2.12) However, In
NN optimization, it is usually difficult to find global minimizers numerically due to
nonconvexity of loss functions. To the best of our knowledge, there is no optimizers
that guarantee to identify a global minimizer. Consequently, the overall error is also
affected by the optimization error, which is the difference between the theoretical
global minimizer \theta \ast and the actually found solution \theta .

In this paper, we only discuss the approximation property of two-layer shallow
networks and take it to figure out the error estimate. We need to mention that the
approximation properties of deep networks with L > 2 have also been studied (see
[36, 45, 46, 47]). For example, it is proved in [36] that if f is a Cs smooth function
in [0,1]d with s \in \BbbN +, then there exists a ReLU FNN \phi with width O(J log(J)) and
depth O(K log(K)) such that \| f  - \phi \| L\infty ([0,1]d) \leq O(J - 2s/dK - 2s/d) for all J,K \in \BbbN +.
By these approximation properties, error estimates for deep networks can also be
derived similarly as in Theorem 3.2, and the error bound can be much sharper if v is
more special.

4. Numerical experiments. In this section, several linear systems from phys-
ical problems are solved by the proposed NN-based method. Due to the high non-
linearity of NNs concerning their parameters, the least squares optimization in this
method is very nonlinear and, hence, difficult to solve. In practice, we can only find
local minimizers rather than global minimizers, which causes a certain amount of op-
timization error. The optimization error then limits the accuracy of the numerical
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A2366 YIQI GU AND MICHAEL K. NG

solution. Consequently, for small linear systems, our NN-based method performs less
accurately than well-developed traditional methods (e.g., conjugate gradient method
and GMRES), which can achieve errors around machine precision for well-conditioned
systems. Nevertheless, the proposed method is capable of extremely large linear sys-
tems that traditional methods cannot deal with. In this paper, we choose extremely
large systems as numerical examples that are exclusively solved by our method, and
we do not have any comparison tests.

Our algorithm is implemented on PyTorch with the CUDA platform. The im-
plementation is not picky for hyperparameters, and the numerical results are usually
stable, so we do not spend much time on tuning parameters. Specifically, for NN
initialization, the results do not show any significant differences between the default
initialization used by us and other common initialization methods (e.g., Xavier's ini-
tialization [22] and He's initialization [24]). Moreover, we observe in experiments that
as long as the batch size is moderately large, enlarging batch sizes will slightly speed
up the error decay but can hardly improve the errors of the final numerical solution.
In our experiments, suitable batch sizes are chosen according to the time-memory
trade-off. For the number of iterations, we empirically set it to make sure the mean
of the losses of the last 100 iterations does not exceed 0.001\% of the initial loss. More
details about the experiment settings can are listed as follows.

\bullet Environment. The method is tested in a Python environment. PyTorch li-
brary (version 1.10.1) with CUDA toolkit (version 11.3) is utilized for NN im-
plementation and GPU-based parallel computing. We upload the programs1

for readers and researchers to generate experimental results.
\bullet Optimizer and hyperparameters. Algorithm 1 is implemented. In each itera-

tion of Algorithm 1, we randomly select a batch of grid points from \Gamma with
uniform distribution and take their indices to form \scrS . The learning rates are
set to decay from 10 - 3 to 10 - 5 with linearly decreasing powers; namely, we
let \tau i be the learning rate of the ith iteration and I be the maximum number
of iterations, and then

\tau i = 10 - 3 - 2i
I for i= 1, . . . , I.(4.1)

We remark that we have also tried an Adam optimizer, which can obtain
smaller errors but cost slightly more computational time compared with the
standard mini-batch gradient descent. Due to the high accuracy of Adam,
the results obtained by Adam in comparative tests are not as illustrative as
those obtained by mini-batch gradient descent, so we only present the results
of the latter.

\bullet Stopping criterion. We set sufficiently many iterations for each example,
which guarantee that the mean of the losses of the last 100 iterations is less
than 0.001\% of the initial loss. This stopping criterion is rigorous enough by
our empirical experiences, from which promising conclusions can be derived.

\bullet Network setting. FNNs with ReLU activation functions are used in the ex-
periments. We implement the method with various depth L and width M
to investigate their effects. The network parameters are initialized using the
default setting of PyTorch library; namely,

a,W\ell , b\ell \sim U( - M - 1/2,M - 1/2), \ell = 1, . . . ,L - 1,(4.2)

which are generated with uniform distribution.

1The programs are available online from https://www.math.hkbu.edu.hk/\sim mng/files/dlearncode.zip.
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DNN FOR SOLVING LINEAR SYSTEMS A2367

\bullet Testing set and error evaluation. We prescribe a set of Ntest grid points from
\Gamma with uniform distribution and take their indices as the testing set, denoted
as \scrT := \{ (\alpha n

1 , . . . , \alpha 
n
d )\} 

N\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}
n=1 . For the examples given true solutions, we define

the following \infty -error over \scrT between the numerical solution \bfitphi (\theta ) and true
solution \bfitu ,

\| \bfitphi (\theta ) - \bfitu \| \infty ,\scrT :=max
\bfitalpha \in \scrT 
| u\bfitalpha  - \phi (\bfitx \bfitalpha ;\theta )| ,(4.3)

and the \ell 2-error over \scrT ,

\| \bfitphi (\theta ) - \bfitu \| \ell 2,\scrT :=

\Biggl( 
1

Ntest

\sum 
\bfitalpha \in \scrT 
| u\bfitalpha  - \phi (x\bfitalpha ;\theta )| 2

\Biggr) 1
2

.(4.4)

And for the examples whose true solutions are unknown, we define the fol-
lowing \ell 2-residual over \scrT :

Res\ell 2(\scrT ) :=

\Biggl( 
1

Ntest

\sum 
\bfitalpha \in \scrT 

[\bfitb  - \bfitA \bfitphi (\theta )]2\zeta (n)

\Biggr) 1
2

=

\Biggl( 
1

Ntest

\sum 
\bfitalpha \in \scrT 
| b\zeta (n)  - \bfita \top 

\zeta (n)\bfitphi (\theta )| 
2

\Biggr) 1
2

,

(4.5)

where \zeta (n) =
\sum d

k=1(\alpha 
n
k  - 1)Nd - k + 1 is the position of the multi-index \bfitalpha =

(\alpha n
1 , . . . , \alpha 

n
d ) in the lexicographical sequence. Note that the solution error is

bounded by the product of the matrix inverse norm and the residual, i.e.,
\| \bfitphi (\theta )  - \bfitu \| \leq \| \bfitA  - 1\| \| \bfitA \bfitphi (\theta )  - \bfitb \| , so small residuals imply small errors for
well-conditioned problems. For all examples, we set Ntest = min\{ 104,Nd\} ,
noting that Nd is the number of all grid points so Ntest is at most Nd.

\bullet Randomness. To check the effect of the uncertainty of results caused by the
randomness of the algorithm in the NN initialization and training data, we
compute the mean of the errors/residuals of the last 100 iterations as the
``final"" error/residual. Moreover, we repeat each experiment using 10 differ-
ent random seeds (commands numpy.random.seed(n) for stochastic NumPy
subroutines and torch.manual seed(n) for PyTorch subroutines) and list
the mean and standard deviation of the results (shown as ``mean \pm stan-
dard deviation""). It shows in the following resulting tables that the standard
deviations are always dominated by the means, so our implementation is
numerically stable and convincing.

In this section, the matrices arising from numerical examples are quite well con-
ditioned. The condition numbers are increasing with N and d mildly, and they do
not grow with d exponentially (i.e., the curse of dimensionality). Hence, we do not
encounter an ill-conditioning issue. However, for problems with huge condition num-
bers, the convergence speed of the gradient descent optimizer will be vastly slowed
down. If the condition number is large, one can only reduce the loss function to a
small extent in every line search toward the gradient, even with the best step size.
Hence, it will cost a huge number of iterations to obtain the desired accuracy.

4.1. Poisson's equation. We consider the Poisson's equation\Biggl\{ 
 - \Delta v(\bfitx ) = f(\bfitx ) in \Omega := [ - 1,1]d,
v(\bfitx ) = 0 on \partial \Omega ,

(4.6)
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which is an elliptic PDE describing a variety of steady-state physical phenomena. The
physical solution of (4.6) is set as

v(\bfitx ) =

d\prod 
i=1

sin(\pi xi),(4.7)

where xi is the ith component of \bfitx .
A widely used approach for (4.6) is the second-order centered finite difference

scheme with uniform grid spacing, which leads to the following matrix with tensor
product structure (see [21] for more details on the structure):

\bfitA =

d\sum 
n=1

\bfitI N \otimes \cdot \cdot \cdot \otimes \bfitI N\underbrace{}  \underbrace{}  
n - 1 terms

\otimes \bfitT \otimes \bfitI N \otimes \cdot \cdot \cdot \otimes \bfitI N\underbrace{}  \underbrace{}  
d - n terms

,(4.8)

where \otimes denotes the Kronecker product; \bfitI N \in \BbbR N\times N is the identity matrix; \bfitT =
[Ti,j ]\in \BbbR N\times N is given by

Ti,j =

\left\{     
 - 2/h2, j = i,

1/h2, j = i\pm 1,

0 else;

(4.9)

h= 2/(N + 1) is the grid size.
In the implementation of our method, the batch size | \scrS | of the mini-batch gradient

descent is set to be min\{ 104,Nd\} , and the maximum number of iterations is set to
be 5\times 104. Note that if the total number of grid points Nd is much larger than the
sizes of training and testing sets, then with high probability, the randomly selected
training and testing sets will be almost disjoint. But for small systems, the training
and testing sets may overlap. And they even coincide if Nd is smaller than 104, in
which case the training/testing set consists of all the grid points.

The condition number \kappa (\bfitA ) of this problem is of O(N2) and is independent of d
[7]. So the theoretical error bound given by (3.6) is O(\| \bfitu \| \scrB ,\Gamma N

2d1/2M - 1/2), which
is increasing with N at least in the second order and decreasing with M in the half
order. We will show the error bound is coarse for the actual numerical results in the
following tests.

4.1.1. Test for small sizes. In the first test, we set the right-hand side \bfitb as
the grid representation of the true physical function f =  - \Delta v = d\pi 2

\prod d
i=1 sin(\pi xi).

Also, we let \bfitv be the grid representation of v; namely,

\bfitv := [v(\bfitx (1,1,...,1)) v(\bfitx (1,1,...,2)) \cdot \cdot \cdot v(\bfitx (N,N,...,N))]
\top \in \BbbR Nd

.(4.10)

Therefore, the true solution \bfitu of the linear system \bfitA \bfitu = \bfitb is an approximation of the
physical solution \bfitv , up to a discretization error O(N - 2) (Theorem 4.2 in [32]). On
the other hand, our method will numerically solve the linear system, obtaining \bfitphi (\theta ),
which is an approximation of \bfitu .

The linear system is solved for d = 3 and various N (N = 6,12,24,48,96). We
implement Algorithm 1 with the network size (L,M) = (3,200), in which \bfitA is applied
as a matrix-free operator. Also, we use MATLAB backslash to obtain a high-accuracy
solution seen as the ``true"" solution \bfitu for error evaluation. In the test, we note that
the size of the linear system is at most 963 by 963, which is still tractable by MATLAB
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DNN FOR SOLVING LINEAR SYSTEMS A2369

sparse solver with high accuracy (the two-norm residual of the MATLAB solution is
1.1\times 10 - 9). The \infty -error and \ell 2-error between any two quantities (\bfitphi (\theta ), \bfitu and \bfitv )
over the testing set are presented in Table 4.1. The error curves with respect to N
are shown in Figure 4.1. We remark that \| \cdot \| \infty ,\scrT and \| \cdot \| \ell 2,\scrT follow the definitions
in (4.3) and (4.4), respectively.

It is observed in Table 4.1 and in Figure 4.1 that on the one hand, the solution
error \| \bfitphi (\theta ) - \bfitu \| is always below O(10 - 4) for various N , though it increases mildly
with N since the linear system is larger and hence more difficult to solve as N becomes
larger. On the other hand, as expected by the theory, the discretization error \| \bfitu  - \bfitv \| 
decreases in the rate O(N - 2) but is still larger than the corresponding solution error
\| \bfitphi (\theta ) - \bfitu \| . And hence the error \| \bfitphi (\theta ) - \bfitv \| , which characterizes the accuracy of our
method in solving the original continuous problem, is dominated by the discretization
error. These results imply that for moderately small N , the accuracy of solving the
linear system is high enough compared with the discretization itself. But ifN is further
larger, the discretization error is likely to continue decreasing and be dominated by
the solution error of the linear system. However, we cannot test larger N due to the
memory limitation in the use of MATLAB direct solvers.

Table 4.1
Errors for various N in the Poisson's equation with physical right-hand sides.

\| \bfitphi (\theta ) - \bfitu \| \infty ,\scrT \| \bfitu  - \bfitv \| \infty ,\scrT \| \bfitphi (\theta ) - \bfitv \| \infty ,\scrT 

N = 6 2.397e-05 \pm 3.299e-05 6.480e-02 6.483e-02 \pm 2.914e-05

N = 12 6.114e-05 \pm 2.479e-05 1.927e-02 1.929e-02 \pm 2.327e-05
N = 24 1.701e-04 \pm 1.935e-05 5.249e-03 5.346e-03 \pm 1.741e-05

N = 48 1.731e-04 \pm 1.745e-05 1.336e-03 1.468e-03 \pm 1.262e-05

N = 96 1.774e-04 \pm 1.372e-05 3.383e-04 4.638e-04 \pm 1.281e-05

(a) \infty -errors

\| \bfitphi (\theta ) - \bfitu \| \ell 2,\scrT \| \bfitu  - \bfitv \| \ell 2,\scrT \| \bfitphi (\theta ) - \bfitv \| \ell 2,\scrT 
N = 6 1.518e-05 \pm 2.129e-05 3.116e-02 3.116e-02 \pm 4.927e-08
N = 12 1.704e-05 \pm 1.408e-05 7.780e-03 7.852e-03 \pm 1.724e-07

N = 24 5.048e-05 \pm 7.770e-06 1.971e-03 1.985e-03 \pm 2.177e-07

N = 48 5.017e-05 \pm 6.368e-06 4.983e-04 5.024e-04 \pm 7.598e-07
N = 96 4.978e-05 \pm 4.852e-06 1.249e-04 1.351e-04 \pm 2.032e-06

(b) \ell 2-errors

Fig. 4.1. Errors versus N in the Poisson's equation with physical right-hand sides (\bfitu and \bfitphi (\theta )
are the true and numerical solutions of the linear system, respectively; \bfitv is the grid representation
of the true solution of the original Poisson's equation).
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A2370 YIQI GU AND MICHAEL K. NG

4.1.2. Test for large sizes. In this experiment, we turn to solve linear systems
of larger sizes in d. Unlike the preceding experiment, we cannot use high-accuracy
traditional solvers to find a ``true"" solution of the linear system. So we artificially
set the true solution as \bfitu = \bfitv given by (4.10). Namely, we ignore the discretization
error and directly take the physical solution as the solution of the linear system. The
right-hand side is thereafter computed as \bfitb =\bfitA \bfitu .

We solve \bfitA \bfitu = \bfitb for d= 3 and 6 using Algorithm 1. The experiment is repeated
for various N (N = 102,103,104) and FNN sizes (L,M) (L= 2,3 and M = 100,200).
The solution errors over the testing set are shown in Table 4.2. It is observed that the
solution error decreases as L or M increases. Also, it is surprising that the solution
error does not differ too much for different values of N , which implies that the solution
error bound given in (3.6) is coarse in terms of N . Moreover, the running time (i.e.,
training time for FNN) of the experiment is also reported in Table 4.3. We can find
that the running time increases with the network size, but it is almost unchanged for

Table 4.2
Errors for various d, N , L, and M in the Poisson's equation.

(L,M) N = 102 N = 103 N = 104

(2,100) 4.578e-03 \pm 1.042e-03 4.612e-03 \pm 1.094e-03 4.443e-03 \pm 8.440e-04
(2,200) 1.986e-03 \pm 2.323e-04 2.034e-03 \pm 1.683e-04 2.036e-03 \pm 1.606e-04

(3,100) 2.577e-04 \pm 2.449e-05 2.609e-04 \pm 2.893e-05 2.646e-04 \pm 3.021e-05

(3,200) 1.818e-04 \pm 1.105e-05 1.839e-04 \pm 1.194e-05 1.815e-04 \pm 1.149e-05

(a) \| \bfitphi (\theta ) - \bfitu \| \infty ,\scrT (d= 3)

(L,M) N = 102 N = 103 N = 104

(2,100) 1.703e-01 \pm 3.143e-02 1.709e-01 \pm 3.449e-02 1.718e-01 \pm 2.643e-02
(2,200) 4.471e-02 \pm 5.377e-03 4.505e-02 \pm 6.190e-03 4.407e-02 \pm 5.752e-03

(3,100) 1.301e-02 \pm 1.366e-03 1.393e-02 \pm 1.377e-03 1.339e-02 \pm 1.074e-03

(3,200) 4.850e-03 \pm 3.314e-04 4.827e-03 \pm 2.576e-04 4.960e-03 \pm 4.270e-04

(b) \| \bfitphi (\theta ) - \bfitu \| \infty ,\scrT (d= 6)

(L,M) N = 102 N = 103 N = 104

(2,100) 9.506e-04 \pm 2.932e-04 9.337e-04 \pm 3.043e-04 8.818e-04 \pm 2.080e-04
(2,200) 3.400e-04 \pm 3.561e-05 3.400e-04 \pm 2.936e-05 3.429e-04 \pm 2.426e-05

(3,100) 6.511e-05 \pm 7.664e-06 6.434e-05 \pm 6.953e-06 6.448e-05 \pm 7.084e-06
(3,200) 5.225e-05 \pm 4.369e-06 5.174e-05 \pm 3.905e-06 5.092e-05 \pm 3.951e-06

(c) \| \bfitphi (\theta ) - \bfitu \| \ell 2,\scrT (d= 3)

(L,M) N = 102 N = 103 N = 104

(2,100) 1.678e-02 \pm 1.690e-03 1.643e-02 \pm 1.939e-03 1.638e-02 \pm 1.810e-03
(2,200) 6.739e-03 \pm 3.228e-04 6.660e-03 \pm 4.591e-04 6.581e-03 \pm 3.476e-04

(3,100) 2.128e-03 \pm 1.454e-04 2.084e-03 \pm 1.522e-04 2.087e-03 \pm 1.504e-04

(3,200) 8.007e-04 \pm 4.432e-05 7.819e-04 \pm 4.124e-05 7.807e-04 \pm 4.382e-05

(d) \| \bfitphi (\theta ) - \bfitu \| \ell 2,\scrT (d= 6)

Table 4.3
Running time (seconds) for various d, N , L, and M in the Poisson's equation.

d= 3 d= 6

(L,M) N = 102 N = 103 N = 104 N = 102 N = 103 N = 104

(2,100) 5.5e+ 02 5.7e+02 5.5e+02 1.1e+03 1.1e+03 1.1e+03

(2,200) 6.1e+ 02 6.1e+02 6.2e+02 1.2e+03 1.2e+03 1.2e+03
(3,100) 7.1e+ 02 6.9e+02 6.9e+02 1.3e+03 1.4e+03 1.3e+03

(3,200) 1.0e+ 03 1.0e+03 1.0e+03 2.0e+03 2.0e+03 2.0e+03
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DNN FOR SOLVING LINEAR SYSTEMS A2371

Fig. 4.2. Errors versus iterations for various FNN sizes in the Poisson's equation (d= 3).

different values of N . So the degree of discretization N does not have a strong effect
on the efficiency of the method.

It is noted that the number of unknown parameters | \theta | is at most 41200 when
(L,M) = (3,200), which is much less than Nd, the size of the linear system. Specif-
ically, in the case that d = 6 and N = 104, the size Nd = 1024 is extremely large,2

which prevents one from using traditional linear solvers, yet the proposed method is
still effective, and obtaining \infty -errors is at best of O(10 - 3).

We also present the error curve (over the testing set) versus iterations in Figure 4.2
to visualize the dynamics of the optimization. It is observed the error decreases
rapidly in the first few iterations and decreases slowly afterward. This means a rough
solution can be obtained within many fewer iterations. Also, It can be seen that the
error decreases of L = 3 are more oscillatory than that of L = 2. The reason is that
the loss function (2.12) with deeper NNs is highly nonlinear in terms of \theta , so the
optimization is more difficult to be solved using the mini-batch gradient method.

4.1.3. Error versus \bfitM . We conduct a third experiment for Poisson's equation
to investigate the relation between the solution error and the network width M and
compare the result with the solution error bound given in (3.6). With the same
setting as in the second experiment, artificial true solution \bfitu = \bfitv is still used. We
implement our method to solve the problem with d = 3 and N = 1000 using L = 2

2The ratio of 41200/1024 is about 4e-20.
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A2372 YIQI GU AND MICHAEL K. NG

Fig. 4.3. \ell 2-errors and running time (seconds) versus M in the Poisson's equation.

Fig. 4.4. \ell 2-errors and running time (seconds) versus L in the Poisson's equation.

and various M (M = 23,24, . . . ,213). The \ell 2-errors versus M are shown in Figure 4.3.
It is observed that when M is relatively small (M \leq 211 in the figure), the numerical
error order is clearly faster than  - 1

2 . This implies that the error bound in (3.6) is
slightly coarse in terms of M . Indeed, the solution error estimate in (3.6) is derived
from the NN approximation error O(M - 1/2) for the class of Barron functions, but
some special functions (e.g., the analytic function v in Poisson's equation) might be
approximated by NNs more tightly. But the decrease of the error curve becomes flat
as M continues increasing and exceeds some threshold (M \geq 211 in the figure), in
which case the solution error is dominated by the optimization error of the gradient
descent optimizer. In addition, the running time for various M is shown in Figure 4.3.
It is clear that when M is moderately large, the running time increases almost linearly
with M .

4.1.4. Error versus \bfitL . Similar to the third experiment, we further investigate
how the solution error behaves with deeper NNs by a fourth test. We still use the
artificial true solution \bfitu = \bfitv . The problem with d = 3 and N = 1000 is solved again
with various L (L = 2,3, . . . ,8). The network width M is set as 10 or 20. The \ell 2-
errors versus L are shown in Figure 4.4. A U-shaped curve is observed such that
the smallest error is attained when L = 5. Consequently, for this experiment, our
method achieves the best accuracy when L= 5. It is reasonable to infer that although
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DNN FOR SOLVING LINEAR SYSTEMS A2373

deeper NNs usually have smaller approximation errors in theory, they may not bring
better numerical results because they are more difficult to train in the practical deep
learning. In other words, smaller L leads to larger approximation errors, and larger L
tends to bring larger optimization errors. We remark that the optimization difficulty
is probably a consequence of the vanishing gradient problem, and it could be overcome
by residual NNs [25] to some extent. The running time for various L is also reported in
Figure 4.4. Similar to the relation with M , the running time increases almost linearly
with the depth L.

4.1.5. Some remarks. In this example, we implement our method to solve the
linear system derived from Poisson's equation with the finite difference method. We
remark that this process is almost equivalent to using PINNs [43] to solve the same
problem. One slight difference is that we address equidistant grid points, but in
PINNs, the distribution of the points can be more general (e.g., uniformly distrib-
uted random points). Another is that we consider using finite difference schemes to
compute the derivatives numerically, but in PINNs, the differentiation can be either
analytically or numerically.

We also note that when the linear system is large, the mini-batch gradient de-
scent cannot take all equations as the training set. For instance, in the test with
N = 104 and d = 6, there are a total of 1024 equations, but we only use 5 \times 104

iterations with batch size 104. So most of the equations are actually not involved in
the computation. In spite of a very tiny ratio of the training set to all data points,
this method is still effective in finding a solution that is quite accurate globally. This
is because the approximate NN can generalize well if the solution is smooth and less
oscillatory. The residual of the nontraining equations is also reduced along with the
minimization of the training set. It also partially explains why the results do not alter
too much even if N increases quickly as long as the nature of the physical solution is
unchanged.

4.2. Riesz fractional diffusion. In the second numerical example, we consider
the following Riesz fractional diffusion equation:

 - 
d\sum 

n=1

cn
\partial \alpha nv

\partial | xn| \alpha n
= y(\bfitx ) in \Omega := [ - 1,1]d,(4.11)

where cn > 0,1 < \alpha n < 2 for all n and \partial \alpha nv
\partial | xn| \alpha n is the Riesz fractional derivative (see

[27]). The physical solution of (4.11) is set as

v(\bfitx ) = sin

\Biggl( 
d\sum 

n - 1

xn

\Biggr) 
,(4.12)

and the corresponding y is therefore given by (4.11).
Employing the finite difference method on (4.11) leads to a linear system whose

matrix \bfitA is given by

\bfitA =

d\sum 
n=1

\bfitI N \otimes \cdot \cdot \cdot \otimes \bfitI N\underbrace{}  \underbrace{}  
n - 1 terms

\otimes \bfitT (n) \otimes \bfitI N \otimes \cdot \cdot \cdot \otimes \bfitI N\underbrace{}  \underbrace{}  
d - n terms

,(4.13)
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A2374 YIQI GU AND MICHAEL K. NG

with \bfitT (n) being the Toeplitz matrix

\bfitT (n) :=

\left[              

2t
(n)
1 t

(n)
0 + t

(n)
2 t

(n)
3

. . . t
(n)
N - 1 t

(n)
N

t
(n)
0 + t

(n)
2 2t

(n)
1 t

(n)
0 + t

(n)
2 t

(n)
3

. . . t
(n)
N - 1

... t
(n)
0 + t

(n)
2 2t

(n)
1

. . .
. . .

...
...

. . .
. . .

. . .
. . . t

(n)
3

t
(n)
N - 1

. . .
. . .

. . . 2t
(n)
1 t

(n)
0 + t

(n)
2

t
(n)
N t

(n)
N - 1 \cdot \cdot \cdot \cdot \cdot \cdot t

(n)
0 + t

(n)
2 2t

(n)
1

\right]              
\in \BbbR N\times N ,

(4.14)

and t
(n)
0 := cn

2 cos(\alpha n\pi 
2 )h\alpha n

, t
(n)
i =

\bigl( 
1 - \alpha n+1

i

\bigr) 
t
(n)
i - 1 for 1\leq i\leq N . The condition number

of \bfitA is of O(N\alpha ) with some 1 < \alpha < 2, and some preconditioning techniques have
been developed (see [35, 15, 38, 14, 27]). In prior work, the linear system with at
most d= 3 is solved.

In this experiment, we set cn = 1 and \alpha n = 1.5 for all n. We solve \bfitA \bfitu = \bfitb for
d= 5,10 and N = 10 using Algorithm 1, where the true solution is set as \bfitu = \bfitv , with
\bfitv being the grid representation of v. We set | \scrS | = 2\times 104 and the number of iterations
to be 2\times 104. Results are shown in Table 4.4. It is clear that the deeper networks
with L= 3 outperform the shallow ones with L= 2 in general. It is also noted in the
case d= 10 that the wider networks with M = 200 performs worse than the narrower
one with M = 100. It implies that larger networks are sometimes more difficult to
train than smaller ones, resulting in greater optimization errors. Despite being more
accurate in approximation, larger networks may not provide better numerical results
in practice.

4.3. Overflow queuing model. The next example is the overflow queuing
model proposed in [10, 11]. Suppose there are d queues with individual queue size N ;
then one aims to find nontrivial solutions of the following Nd \times Nd linear system:

(\bfitA +\bfitR )\bfitu = 0.(4.15)

Table 4.4
Errors for various d, L, and M in the linear systems arising from the Riesz fractional diffusion.

d= 5 d= 10

(2,100) 1.059e-01 \pm 2.054e-02 4.063e-02 \pm 1.206e-02

(2,200) 8.205e-02 \pm 3.100e-02 6.516e-02 \pm 2.599e-02

(3,100) 2.947e-03 \pm 4.333e-04 8.435e-03 \pm 6.248e-03
(3,200) 2.349e-03 \pm 2.032e-04 1.675e-02 \pm 6.920e-03

(a) \| \bfitphi (\theta ) - \bfitu \| \infty ,\scrT 

d= 5 d= 10

(2,100) 4.584e-02 \pm 1.382e-02 9.701e-03 \pm 2.949e-03

(2,200) 2.368e-02 \pm 1.393e-02 1.443e-02 \pm 5.987e-03
(3,100) 8.140e-04 \pm 8.405e-05 1.565e-03 \pm 5.339e-04

(3,200) 6.305e-04 \pm 5.490e-05 2.637e-03 \pm 4.855e-04

(b) \| \bfitphi (\theta ) - \bfitu \| \ell 2,\scrT 
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DNN FOR SOLVING LINEAR SYSTEMS A2375

Here the first part \bfitA has the tensor product structure (4.13), in which \bfitT (n) is given
by

\bfitT (n):=

\left[                     

\lambda n  - \mu n

 - \lambda n \lambda n + \mu n  - 2\mu n

 - \lambda n \lambda n + 2\mu n  - 3\mu n

. . .
. . .

. . .

 - \lambda n \lambda n + sn\mu n  - sn\mu n

. . .
. . .

. . .

 - \lambda n \lambda n + sn\mu n  - sn\mu n

 - \lambda n sn\mu n

\right]                     

\in \BbbR N\times N ,

where sn \in \BbbN +, \lambda n, \alpha \in \BbbR + are physical parameters, and \mu n := s - 1
n (\lambda n + (N  - 1) - \alpha ).

The second part \bfitR =
\sum 

m\not =n\bfitR mn, with

\bfitR mn =

d\bigotimes 
k=1

(\bfite m\bfite \top m)\delta mk\bfitR \delta nk
m ,(4.16)

where \bfite m is the mth unit vector in \BbbR N , \delta mn is the Kronecker delta, and

\bfitR m := \lambda m

\left[       
1
 - 1 1

. . .
. . .

 - 1 1
 - 1 0

\right]       .(4.17)

The (normalized) nontrivial solution \bfitu represents the steady-state probability dis-
tribution of the queue system. More precisely, u(i1,i2,...,id) is the probability that ik
customers are in the kth queue for k= 1, . . . , d. It has been shown that \bfitA +\bfitR has a
one-dimensional nullspace.

This problem has an analogue in the continuous case. It is equivalent to the finite
difference approximation to an elliptic PDE with a transport term in a rectangular
domain, accompanied with the Neumann boundary condition (except for an oblique
derivative condition on one particular side). Despite the true solution \bfitu not being
given, we can expect that \bfitu is an analogue to the PDE solution up to the local
truncation error of the finite difference scheme, and hence \bfitu can be interpolated by
smooth Barron functions so that \| \bfitu \| \scrB ,\Gamma in the error bound (3.6) can be small.

In prior work, one could at most solve the linear system with d = 2. Due to
the one-dimensional nullspace of the matrix, here we use the least squares model
with penalty (2.17) to solve (4.15) for d = 5,10, in which the first component of \bfitu 
is fixed as 1 and the penalty parameter \varepsilon is set as 1.0. Since the original problem
does not involve any physical domains, a fictitious domain [0,1]d is introduced for the
implementation. We set N = 100, \alpha = 1, \lambda n = 0.01, and sn = 8n for n= 1, . . . , d. The
algorithm is implemented with | \scrS | = 2\times 104, and the number of iterations is 2\times 104.
The residuals of the obtained solutions are listed in Table 4.5.

We are also interested in the actual distribution of the numerical solution.
Specifically, in the case d = 10, L = 2, and M = 200, we find that xmax

= x(2,6,10,15,18,24,27,32,36,40) is the location where the approximate solution \bfitphi (\theta ) takes
its maximum 2.155. It is intuitive to find that the nth index of xmax is equal or
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Table 4.5
Residuals for various d, L, and M in the queuing problem.

(L,M) d= 5 d= 10

(2,100) 7.625e-04 \pm 3.078e-05 1.268e-03 \pm 2.582e-04
(2,200) 7.135e-04 \pm 1.729e-05 1.279e-03 \pm 1.555e-04

(3,100) 6.519e-04 \pm 8.867e-06 1.073e-03 \pm 3.346e-05

(3,200) 6.492e-04 \pm 1.422e-05 1.100e-03 \pm 2.585e-05

Fig. 4.5. Two-dimensional slices of the numerical solution \phi (x, \theta ) passing through the maximal
point xmax in the queuing problem (d= 10,L= 3,M = 200).

close to sn/2. To show a more clear distribution of the solution, we present the
two-dimensional slices passing through xmax in Figure 4.5.

Note that the true solutions are unknown. To verify that the images in Figure 4.5
are believable, we take a low-dimensional test for comparison. We solve the queuing
linear systems with d= 2 or 3 by MATLAB high-accuracy solvers, and the numerical
solutions are accurate since the residual is as small as the machine precision. In
the low-dimensional cases, we have observed the same property as in the previous
high-dimensional cases; namely, the numerical solution attains its maximum at the
position sn/2 for the nth index. So we believe that the probability distribution shown
in Figure 4.5 is a good simulation, at least in the sense of locating the maxima.
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4.4. Probabilistic Boolean networks. Let us consider the steady-state prob-
ability distribution of probabilistic Boolean networks, which are widely applied in
real-world problems such as genomic signal processing [33]. In this problem, one aims
to find the eigenvector associated with the principle eigenvalue 1 of the transition
probability matrix, and the normalized eigenvector exactly represents the steady-
state probability distribution. The transition probability matrix is of size 2d by 2d,
where d is the number of genes.

In our experiment, we generate a sparse Toeplitz matrix \widetilde \bfitT = [tij ]\in \BbbR 2d\times 2d by

tij =

\Biggl\{ 
vk if j = i+ k for some k \in \scrI ,
0 otherwise,

(4.18)

where \scrI is a prescribed sparse subset of \{  - 2d, - 2d + 1, . . . ,2d\} and \{ vk\} k\in \scrI is a
prescribed set of positive constants. Followed by column normalization on \widetilde \bfitT , we
obtain the transition probability matrix \bfitT whose each column adds up to 1. In
practice, we casually choose \scrI = \{  - 13, - 5,2,6\} and \{ v13, v - 5, v2, v6\} = \{ 1,4,3,2\} .

The proposed method is implemented to find the principle eigenvector of \bfitT . First,
we introduce the fictitious domain [0,1]d and take two grid points 1/3 and 2/3 in each
dimension. Then we take the following penalized model to compute (\bfitI  - \bfitT )\bfitu = 0:

min
\theta 

1

Nd
\| (\bfitI  - \bfitT )\bfitphi (\theta )\| 22 + \varepsilon  - 1

\bigl( 
N - d \cdot 1\top \bfitphi (\theta ) - 1

\bigr) 2
,(4.19)

where 1 is the all-ones column vector in \BbbR 2d ; namely, we require the mean of the
approximate solution to be 1.

This example is slightly different from previous ones. In each dimension, the
solution of the linear system characterizes the Boolean state of one object, so the
number of grid points in each dimension is always two. Therefore, the solution \bfitu is a
grid function defined at a 2\times 2\times \cdot \cdot \cdot \times 2 (d times) grid, which can be interpolated by
tensor product linear polynomials. Indeed, recall that the tensor product polynomial
space of degree 1 is given by \scrP := span\{ xp1

1 xp2

2 . . . xpd

d : pi = 0 or 1 for i = 1, . . . , d\} .
Since the degree of freedom of \scrP is exactly 2d, there exists a unique polynomial f
in \scrP such that u\bfitalpha = f(\bfitx \bfitalpha ) for all \bfitalpha \in \Lambda . Moreover, f is analytic and smooth in \Omega 
and hence can be extended to a Barron function on \BbbR d with a relatively small Barron
norm. So we can expect that \| \bfitu \| \scrB ,\Gamma in the error bound (3.6) is small.

The model (4.19) is implemented using a mini-batch gradient descent algorithm
with \varepsilon = 1.0, | \scrS | = 2\times 104, and number of iteration 2\times 104. In each iteration, the
term N - d \cdot 1\top \bfitphi (\theta ) is only calculated at the training points; specifically, we calculate
| \scrS |  - 1

\sum 
x\in \scrS \phi (x;\theta ) instead. The cases d = 50 and 100 are tested, where the matrix

\bfitI  - \bfitT has O(1015) and O(1030) nonzero entries, respectively. The resulting residuals
are listed in Table 4.6. We remark that our experiment computes much larger systems
than the previous work [33], which solves the same problem with at most 30 dimensions
and 5\times 104 nonzero entries.

Table 4.6
Residuals for various d, L, and M in the probabilistic Boolean network problem.

(L,M) d= 50 d= 100

(2,100) 6.146e-04 \pm 1.286e-04 1.783e-02 \pm 1.279e-03

(2,200) 5.809e-04 \pm 8.542e-05 1.761e-02 \pm 8.862e-04
(3,100) 5.239e-04 \pm 8.815e-05 3.504e-03 \pm 8.978e-04

(3,200) 5.031e-04 \pm 8.915e-05 3.840e-03 \pm 2.047e-04

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

3/
23

 to
 1

13
.5

4.
20

8.
89

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



A2378 YIQI GU AND MICHAEL K. NG

5. Conclusion. This work develops a novel NN-based method for extremely
large linear systems. The main advantage lies in the saving of storage. Specifically,
we create an NN representation for the unknown vector, containing many fewer free
elements than the original linear system. The system is then modified to a nonlinear
least squares optimization, and it can be solved by gradient descent under a deep
learning framework. The proposed method allows us to deal with problems out of
storage if using traditional linear solvers. An error estimate is also provided using the
approximation property of NNs.

Several physical problems are considered in the numerical experiments. This
method is successfully implemented to solve the corresponding linear systems. Com-
pared with prior work on these problems, we solve systems of much larger sizes,
usually intractable for other existing methods. However, the accuracy of this NN-
based method is generally not as high as traditional ones due to the optimization
error. Hence, it is not recommended for small linear systems.

Moreover, as mentioned in section 4.1.5, the effectiveness of the method relies
on the smoothness of the physical problem. It is required that the solution and the
right-hand side of the linear system do not oscillate globally or locally. Otherwise, the
proposed method will fail. For example, suppose the physical solution is zero except
for a few localized spikes in small regions. In that case, the corresponding right-hand
side of the linear system will also be zero but with a small number of components.
So, with high probability, the equations selected as the training set will have exactly
zero right-hand sides, and the numerical solution is identically zero. In other words,
this method cannot capture the very local property of the solution that is far away
from the global tendency.

One direction of future work could be the convergence analysis of the gradient de-
scent in solving the least squares optimization. Namely, we could investigate whether
the gradient descent necessarily finds good minimizers. In recent years, some research
work has been conducted on the convergence of gradient descent in NN regression, yet
it is significantly different from this situation. On the one hand, the loss function in
this method is the residual of the linear system rather than the simple \ell 2 or entropy
loss discussed in prior work. On the other hand, most of the previous analysis is based
on the overparametrization hypothesis, in which the NN has many more parameters
than terms in the loss function. But, in this method, we expect to use NNs with many
fewer parameters than equations or unknowns to save the storage.

Numerical results in section 4.1.2 demonstrate that the accuracy and efficiency
of the method are hardly affected by the degree of discretization N . In fact, as N
increases, although the linear system becomes larger, the mini-batch gradient descent
will not carry more burden because the computational amount only depends on the
batch size and the number of iterations. Also, we note that our method aims to learn
a ``smooth"" solution, which is a discretization of the physical solution of the original
continuous problem, instead of unstructured discrete data. Hence, we do not need a
very wide or deep (i.e., overparametrized) NN as the learner of the target solution.
Recent literature [2, 1] implies that in learning problems, if the target function is
smooth enough (e.g., a polynomial or an NN-like function), it suffices to use a small
learner network whose size does not increase with the number of training samples,
and it can be successfully trained by gradient descent. Therefore, the analysis of the
gradient descent optimization in our method could be made in similar ways, avoiding
the overparametrization framework.
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We are also inspired by the last numerical example, in which the solution repre-
sents binary probability distribution and does not characterize any smooth physical
quantities. One open question is whether the smoothness hypothesis of the solution
is necessary for the success of this method if we regard the linear system as a 2d\times 2d

structure. In this case, the approximate network only has to fit two points in every
dimension. It is simply required that the network acts as a straight line in any dimen-
sion. Therefore, it is interesting to investigate whether general 2d\times 2d linear systems
can be handled by this method without many hypotheses on the solution.
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