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Abstract. In this paper, we consider the density estimation problem associated with the sta-
tionary measure of ergodic It\^o diffusions from a discrete-time series that approximate the solutions
of the stochastic differential equations. To take advantage of the characterization of density func-
tion through the stationary solution of a parabolic-type Fokker--Planck PDE, we proceed as follows:
First, we employ deep neural networks to approximate the drift and diffusion terms of the SDE by
solving appropriate supervised learning tasks. Subsequently, we solve a steady-state Fokker--Planck
equation associated with the estimated drift and diffusion coefficients with a neural-network--based
least squares method. We establish the convergence of the proposed scheme under appropriate math-
ematical assumptions, accounting for the generalization errors induced by regressing the drift and
diffusion coefficients and the PDE solvers. This theoretical study relies on a recent perturbation
theory of Markov chain result that shows a linear dependence of the density estimation to the error
in estimating the drift term and generalization error results of nonparametric regression and PDE
regression solution obtained with neural-network models. We demonstrate the effectiveness of this
method by numerical simulations of a two-dimensional Student t-distribution and a 20-dimensional
Langevin dynamics.

Key words. stochastic differential equations, data-driven method, deep neural network, Fokker--
Planck equation
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1. Introduction. Many phenomena subject to random perturbations can be
modeled by stochastic differential equations (SDEs) driven by Brownian noises. Un-
der some regularity assumptions, the time evolution of the probability measure can be
characterized by the Fokker--Planck equation, a parabolic PDE that governs the time
evolution of the density function of the underlying stochastic processes. Despite its
wide applications in modeling physical or biological systems [6, 16, 21, 26, 54], solv-
ing the Fokker--Planck PDE associated to high-dimensional It\^o diffusion processes is
computationally a challenging task. In this paper, we are interested in estimating the
density function associated with the stationary solution of the Fokker--Planck PDE
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46 Y. GU, J. HARLIM, S. LIANG, AND H. YANG

from a discrete-time series of approximate solutions of the underlying SDEs without
knowing the explicit drift and diffusion components.

Density estimation is a longstanding problem in computational statistics and ma-
chine learning. Among the existing approaches, it is widely accepted that the classical
kernel density estimation [55] is not effective for problems with a dimension higher
than three (see, e.g., [25, 39, 66]). Along this line, the kernel embedding (another class
of linear estimator) also suffered from the curse of dimension [73]. Another class of
popular parametric density estimators is the Gaussian mixture models (which is also
known as the radial basis models in some literature) [25]. This class of approaches is
considered as a nonlinear estimator method since the training involves the minimiza-
tion of a loss function that depends nonlinearly on the latent parameters. A practical
issue of such a nonconvex nonlinear optimization problem is the difficulty in identi-
fying the global minimizer using numerical methods. While this issue is not solved,
recent advances in deep learning theory show that the deep neural network (DNN),
as a composition of multiple linear transformations and simple nonlinear activation
functions, has the capacity of approximating various kinds of functions, overcoming
or mitigating the curse of dimensionality [15, 24, 38, 47, 48, 49, 52, 59, 69]. Besides,
it is shown that, with overparametrization and random initialization, the DNN-based
least squares optimization achieves a global minimizer by gradient descent with a
linear convergence rate in both the setting of regression [1, 8, 10, 11, 13, 28, 41, 44]
and PDE solvers [35, 42]. In parallel to this finding, several density estimators have
adopted DNN, such as the neural autoregressive distribution estimation [63] and its
variant, the masked autoregressive flow [51].

Building on these encouraging results, we consider solving the density estimation
problem where the target function is the density associated with the stationary mea-
sure of an It\^o process. With this prior knowledge, we propose to solve the density
estimation problem following these two steps. First, we employ a deep learning algo-
rithm to solve appropriate supervised learning tasks to uncover the drift and diffusion
coefficients of the SDEs. Second, we solve the stationary Fokker--Planck PDE gener-
ated from the estimated drift and diffusion coefficients. While traditional grid-based
numerical methods, such as finite element methods and finite difference methods [33,
57, 61], can be employed to solve the Fokker--Planck equation, they are usually limited
to low-dimensional problems. On the other hand, neural-network--based methods have
been successfully used in solving high-dimensional PDEs [17, 19, 30, 31, 37, 53, 71,
72], including the recent application in solving the high-dimensional Fokker--Planck
equation [36, 68, 72]. These successes encourage us to also use deep learning to solve
the approximate Fokker--Planck PDE.

We will also develop a new theory for the proposed approach with numerical ver-
ifications on low- and relatively high-dimensional test examples, especially when the
parameters of the Fokker--Planck equations have to be estimated, which has not been
considered in the literature. Our theory can also explain and support the empirical
success of existing deep learning approaches lacking the theoretical analysis of deep
learning. The main goals of this theoretical study are to (1) understand under which
mathematical assumptions can the density estimation problem be well-posed, (2) es-
tablish the convergence of the proposed scheme, and (3) identify the error in terms of
training sample size, width/depth of the neural-network models, discretization time
step and noise amplitudes in the training data, and the dimension of the stochastic
processes. In conjunction, we will also verify whether the perturbation theory [74]
is valid. Particularly, we will check whether the stochastic process associated with
the estimated drift and diffusion terms (obtained from deep learning regression in
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STATIONARY DENSITY ESTIMATION USING DEEP LEARNING 47

the first step) can indeed estimate the underlying invariant measure accurately. This
verification is a by-product that can practically be used to generate more samples if
needed.

The organization of this paper is as follows: In section 2, we introduce the problem
of stationary density estimation associated with It\^o diffusions. In section 3, the deep
learning method is discussed. In section 4, we provide the convergence theoretical
analysis. In section 5, we present the numerical experiments of Student's distribution
and Langevin dynamics. We conclude the paper with some remarks and open ques-
tions in section 6. To improve the readability, we report the proofs of the lemmas of
section 4 in Appendix A.

2. Problem setup. Consider the following SDE,

dXt = \bfita (Xt)dt+ \bfitb (Xt)dWt,(2.1)

with an initial condition randomly drawn from an arbitrary well-defined distribution,
X0 \sim \pi 0. The SDE in (2.1) is defined with a drift term, \bfita :\BbbR d \rightarrow \BbbR d, and a diffusion
tensor, \bfitb : \BbbR d \rightarrow \BbbR d\times m, where m\leq d. Here, Wt denotes the standard m-dimensional
Wiener process. We assume that \bfita and \bfitb are globally Lipschitz such that the SDE
in (2.1) with the initial condition X0 = x has a unique solution. In addition, we also
assume that the Markov process Xt is ergodic. This implies that the transition kernel
corresponding to the Markov process Xt converges to a unique stationary measure \pi 
as t\rightarrow \infty . When the probability measure \pi is absolutely continuous with respect to
the Lebesque measure, d\pi (x) = p(x)dx, the density function p :\BbbR d \rightarrow \BbbR is the solution
of the stationary Fokker--Planck equation,

\scrL \ast p := - div(\bfita p) +
1

2

n\sum 
i,j=1

\partial 

\partial xi

\partial 

\partial xj
((\bfitb \bfitb \top )ijp) = 0,(2.2)

where p\geq 0 and
\int 
\BbbR d p(x)dx= 1. We will state these (and additional) assumptions in

section 4 for the convergence analysis study.
In this work, we aim to estimate the stationary density p of the SDE (2.1) without

the knowledge of \bfita and \bfitb . What is available is a time series \{ \bfitx n\} n\geq 0 generated by a
numerical SDE solver of (2.1) that is assumed to possess an ergodic invariant measure,
\~\pi , whose ``distance"" from \pi can be controlled by the numerical discretization time
step \delta t. We should point out that when \bfita is globally Lipschitz and \bfitb is a full rank
matrix and if the underlying Markov process in Xt in (2.1) is geometrically ergodic,
then the Markov chain \{ \bfitx n\} induced by the Euler--Maruyama (EM) discretization is
also geometrically ergodic [43]. In section 4, we will restrict our convergence study
to this case. In a less stringent case, e.g., \bfita is locally Lipschitz, the Markov chain
induced by EM discretization is not ergodic in general. While one can generate an
ergodic Markov chain by solving the SDE in (2.1) with a stochastic backward Euler
discretization [43], consistent learning from samples of such an ergodic chain will
induce a more complicated loss function that incorporates the backward Euler scheme.
While this case can be incorporated numerically, we neglect it in this paper since
generally speaking the discretization scheme is unknown and the inconsistency of the
numerical schemes that are used in generating the time series and in the construction
of loss function in the learning algorithm induces an additional bias. For simplicity,
we consider discrete Markov chain \bfitx n generated by EM scheme,

\bfitx n+1  - \bfitx n = \bfita (\bfitx n)\delta t+ \bfitb (\bfitx n)
\surd 
\delta t\bfitxi n, \bfitxi n \sim \scrN (0,\bfitI m),(2.3)
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48 Y. GU, J. HARLIM, S. LIANG, AND H. YANG

where \delta t denotes the time step size and \bfitI m is an m\times m identity matrix. In the next
section, we will use the same discretization to construct the appropriate loss functions
to approximate \bfita and \bfitb \bfitb \top . Since the available training data are sampled from \~\pi , the
learning algorithm can only (at best) achieve a population risk defined with respect
to \~\pi , and we will characterize the error induced by the EM discretization using an
existing perturbation theory result.

While the SDE is defined on an entire unbounded domain \BbbR d (the measure is not
compactly supported or the density is strictly positive away from zero), numerically
we can only solve the PDE on a bounded domain. Following existing approaches of
solving Fokker--Planck PDEs with neural networks [64, 68, 72], we consider a simply
compact hypercube \Omega \subset \BbbR d large enough such that the density on \BbbR d\setminus \Omega is effectively
negligible. Practically, this assumption implies that the training data \bfitx n \in \Omega , and
the stationary solution that we are looking for can be normalized with respect to \Omega ,
that is,

\int 
\Omega 
p(\bfitx )d\bfitx = 1. This assumption is critical especially when the vector field

\bfita is unknown and needs to be numerically estimated with deep learning, for which
one can only (at best) guarantee the error in L2-topology over a compact domain. In
section 4, we will clarify this assumption.

3. Deep learning method for density estimation. In this section, we intro-
duce a deep learning method to estimate the stationary density of SDE (2.1) from a
time series of its solution, which consists of two steps. We begin the discussion by re-
viewing two deep learning architectures that we will use in our numerical simulations,
the fully connected neural network (FNN) and the residual neural network (ResNet)
in section 3.1. Given a time series of the SDEs in (2.1), we fit the drift \bfita and diffusion
coefficients \bfitb \bfitb \top in the SDE (2.1) by neural networks (NNs), denoted as \bfita NN and
\bfitB NN, respectively (see section 3.2). Define \^\scrL \ast as the Fokker--Planck (FP) differential
operator corresponding to the estimated networks \bfita NN and \bfitB NN that approximates
the underlying (FP) operator \scrL \ast in (2.2). Our approach in estimating the stationary
density p is to solve the homogeneous PDE \^\scrL \ast \^p= 0, where \^p is a solution parameter-
ized by an FNN. The PDE can be solved via the network-based least squares method
introduced in section 3.3.

3.1. Neural networks. We now give a brief overview of the two basic neural
networks that have been widely employed in deep learning. The first one is the FNN.
Suppose d is the dimensions of inputs. Given an activation function \sigma : \BbbR \rightarrow \BbbR ,
L\in \BbbN +, and w\ell \in \BbbN + for \ell = 1, . . . ,L, an FNN is constructed as the composition of L
simple nonlinear functions as follows:

\phi NN(\bfitx ;\bfittheta ) := \bfitc \top \bfith L \circ \bfith L - 1 \circ \cdot \cdot \cdot \circ \bfith 1(\bfitx ) for \bfitx \in \BbbR d,

where \bfitc \in \BbbR wL\times 1; \bfith \ell (\bfitx \ell ) := \sigma (\bfitW \ell \bfitx \ell + \bfitg \ell ) with \bfitW \ell \in \BbbR w\ell \times w\ell  - 1 and \bfitg \ell \in \BbbR w\ell for
\ell = 1, . . . ,L (W0 := d). With the abuse of notations, \sigma (\bfitx ) means that \sigma is applied
entrywise to a vector \bfitx to obtain another vector of the same size. w\ell is the width of
the \ell th layer, and L is the depth of the FNN. \bfittheta := \{ \bfitc ,\bfitW \ell , \bfitg \ell : 1\leq \ell \leq L\} is the set
of all parameters in \phi NN to determine the underlying neural network.

Besides FNN, in our numerical simulations, we will also consider the ResNet [20].
Using similar notations above, ResNet can be defined recursively as follows:

\bfith 0 = x,\bfith  - 1 = 0,

v\ell = \sigma (\bfitW \ell \bfith \ell  - 1 + \bfitg \ell ) , \ell = 1,2, . . . ,L,

\bfith \ell =pad(\bfith \ell  - 2) + v\ell , \ell = 1,2, . . . ,L,(3.1)

\phi NN(x;\bfittheta ) = \bfitc \top \bfith L.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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STATIONARY DENSITY ESTIMATION USING DEEP LEARNING 49

Here, the function pad(\cdot ) is used to pad zeros to the vector such that two vectors in the
summation (3.1) are of the same size. Popular types of activation functions include
the rectified linear unit (ReLU) \sigma (x) =max\{ 0, x\} , ReLU3 \sigma (x) =max\{ 0, x3/6\} , Tanh
\sigma (x) = ex - e - x

ex+e - x , and Mish \sigma (x) = xTanh(log(1 + ex)) [46]. We use \scrF L,W,\sigma to denote
the class of FNNs with depth L, width W for all layers and activation \sigma .

3.2. Regression of drift and diffusion coefficients. Taking the expectation
of (2.3) with respect to \bfitxi n, one can see that

\BbbE [\bfitx n+1  - \bfitx n  - \bfita (\bfitx n)\delta t] = 0.(3.2)

With this identity, we consider a supervised learning method for estimating \bfita (\bfitx )
with neural networks. More precisely, we approximate every component of \bfita (\bfitx ) by
an FNN aNN(\bfitx ;\bfittheta ) parameterized by a set of trainable parameters \bfittheta . In practice,

letting \bfity n := \bfitx n+1 - \bfitx n

\delta t , by (3.2), we define \bfittheta a
i as follows:

(3.3) \bfittheta a
i := argmin

\bfittheta 

1

N

N - 1\sum 
n=0

| yni  - aNN(\bfitx 
n;\bfittheta )| 2

for i= 1, . . . , d, where yni is the ith component of \bfity n. Then we define the vector-valued
function

(3.4) \bfita NN(\bfitx ;\bfittheta 
a) := [aNN(\bfitx ;\bfittheta 

a
1), . . . , aNN(\bfitx ;\bfittheta 

a
d)]

\top 

as the drift estimator to approximate \bfita (\bfitx ), where \bfittheta a consists of \{ \bfittheta a
i \} .

This is a supervised learning task to estimate \bfita :\BbbR d \rightarrow \BbbR d from a pair of labeled
training datasets, \{ \bfitx n,\bfity n\} N - 1

n=0 . To simplify the analysis in the next section, we
assume that \bfitx i is independent and identically distributed (i.i.d.) samples of the
stationary random distribution \~\pi . While we do not employ this simplification in our
numerical study, practically, such i.i.d. samples can be obtained by subsampling from
the Markov chain \{ \bfitx n\} n\geq 0 such that their temporal correlation is negligible. For
convenience of the following discussion, we denote \scrX := \{ \bfitx 0, . . . ,\bfitx N - 1\} and \scrY :=
\{ \bfity 0, . . . ,\bfity N - 1\} . In (3.3), the parameter \bfittheta a

i is a global minimizer of the empirical loss
function. Practically, since stochastic gradient descent or the Adam method [32] is
used, such a global minimizer may not necessarily be identified.

Next, we approximate \bfitb (\bfitx )\bfitb (\bfitx )\top in similar ways. The (i, j)th component of
\bfitb (\bfitx )\bfitb (\bfitx )\top can be approximated by an FNN BNN(\bfitx ;\bfittheta 

b
ij). Since \bfitxi n is independent of

\bfitx n, using the fact that \BbbE [\bfitxi n\bfitxi 
\top 
n ] = \bfitI n and (2.3) we have

\BbbE 
\Bigl[ 
(\bfitx n+1  - \bfitx n  - \bfita (\bfitx n)\delta t)(\bfitx n+1  - \bfitx n  - \bfita (\bfitx n)\delta t)\top  - \bfitb (\bfitx n)\bfitb (\bfitx n)\top \delta t

\Bigr] 
= 0.

Based on this identity, assuming that we have obtained the network \bfita NN(\bfitx ;\bfittheta 
a) \approx 

\bfita (\bfitx ), we can compute \bfittheta b
ij by

(3.5) \bfittheta b
ij := argmin

\bfittheta 

1

N

N - 1\sum 
n=0

\bigm| \bigm| \bigm| \bigm| (yni  - aNN(\bfitx 
n,\bfittheta a

i ))(y
n
j  - aNN(\bfitx 

n,\bfittheta a
j )) - 

1

\delta t
BNN(\bfitx 

n;\bfittheta )

\bigm| \bigm| \bigm| \bigm| 2
for 1\leq i, j \leq d. Similarly, the global minimizer \bfittheta b

ij may not be identified in practice.
To summarize, if these global minimizers are identified, the training procedure gives
\bfitB NN(\bfitx ) := [BNN(\bfitx ,\bfittheta 

b
ij)]i,j=1,...,d \approx \bfitb (\bfitx )\bfitb (\bfitx )\top .
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D
ow

nl
oa

de
d 

02
/0

3/
23

 to
 1

52
.3

.4
3.

64
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



50 Y. GU, J. HARLIM, S. LIANG, AND H. YANG

We should also point out that, when the diffusion tensor is a constant matrix,
\bfitb \in \BbbR d\times m, we do not need to solve the optimization problem (3.5) by deep learning.
In such a case, \bfitB NN is specified as a matrix, and we will empirically estimate \bfitb \bfitb \top 

using the residual from the drift estimator \bfita NN(\cdot ). Particularly,

\bfitB NN :=
\delta t

N

N\sum 
n=1

(\bfity n  - \bfita NN(\bfitx 
n;\bfittheta a)) (\bfity n  - \bfita NN(\bfitx 

n;\bfittheta a))
\top 
,(3.6)

where we used the same notation \bfitB NN and understand that it is a d\times d matrix in
this case.

3.3. Estimation of the stationary density. Given the approximate drift
\bfita NN \approx \bfita and diffusion coefficient, \bfitB NN \approx \bfitb \bfitb \top , we define the estimated FP oper-
ator,

\^\scrL \ast p := - div(\bfita NNp) +
1

2

d\sum 
i,j=1

\partial 

\partial xi

\partial 

\partial xj
(Bij

NNp),(3.7)

where Bij
NN is the (i, j)-entry of BNN. Subsequently, the stationary density is estimated

by solving the approximate stationary FP equation,

\^\scrL \ast \^p= 0 in \Omega ,(3.8)

where \^p : \Omega \rightarrow (0,\infty ) denotes the analytical solution of this PDE that satisfies\int 
\Omega 

\^p(\bfitx )d\bfitx = 1.(3.9)

Numerically, we set \Omega to be a rectangular domain that is large enough yet tightly
covers most of the data points in \scrX .

We solve (3.8) with the condition (3.9) by the popular network-based least squares
method [12, 34]. Specifically, we use a neural network \^pNN(\bfitx ;\bfittheta ) with a parameter set
\bfittheta determined by solving the following minimization problem:

min
\bfittheta 

J [\^pNN(\cdot ;\bfittheta )],

where

(3.10) J [q] := \| \^\scrL \ast q\| 2L2(\Omega ) + \lambda 1

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

q(\bfitx )d\bfitx  - 1

\bigm| \bigm| \bigm| \bigm| 2 + \lambda 2\| q\| 2L2(\partial \Omega ) \forall q : \Omega \rightarrow \BbbR .

Here, \lambda 1 is a regularization constant corresponding to the normalization factor in (3.9)
to ensure a nontrivial solution; \lambda 2 is a regularization parameter corresponding to an
artificial Dirichlet boundary condition. In our numerical simulation, we empirically
found that the artificial boundary constraint can be neglected if the function values
at the prescribed boundary is sufficiently small.

In the practical computation, when d is moderately large, the first term of (3.10)
is usually computed via a Monte Carlo integration. For example, if the data \{ \bfitx n

I \} 
N1
n=1

are uniformly distributed points in \Omega , then

\| \^\scrL \ast q\| 2L2(\Omega ) \approx 
| \Omega | 
N1

N1\sum 
n=1

\bigm| \bigm| \bigm| \^\scrL \ast q(\bfitx n
I )
\bigm| \bigm| \bigm| 2,(3.11)
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STATIONARY DENSITY ESTIMATION USING DEEP LEARNING 51

where | \Omega | denotes the volume of the domain \Omega . Similarly, as for the second term in
(3.10), a Monte Carlo integral is formulated as\int 

\Omega 

q(\bfitx )d\bfitx \approx | \Omega | 
N2

N2\sum 
n=1

q(\bfitx n
II),(3.12)

where \{ \bfitx n
II\} 

N2
n=1 are uniformly distributed sampled points in \Omega . For the third term in

(3.10), we approximate,

\| q\| L2(\partial \Omega ) \approx 
| \partial \Omega | 
N3

N3\sum 
n=1

| q(\bfitx n
III)| 2,(3.13)

where \{ \bfitx n
III\} 

N3
n=1 are uniformly distributed sampled points in \partial \Omega .

Combining (3.11), (3.12), and (3.13), the training procedure is to minimize the
following empirical loss function:

JS [q] :=
| \Omega | 
N1

N1\sum 
n=1

\bigm| \bigm| \bigm| \^\scrL \ast q(\bfitx n
I )
\bigm| \bigm| \bigm| 2 + \lambda 1

\bigm| \bigm| \bigm| \bigm| \bigm| | \Omega | N2

N2\sum 
n=1

q(\bfitx n
II) - 1

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+ \lambda 2
| \partial \Omega | 
N3

N3\sum 
n=1

| q(\bfitx n
III)| 

2
.(3.14)

Let

\bfittheta S = argmin
\bfittheta 
JS [\^pNN(\cdot ;\bfittheta )];(3.15)

then the density estimator is given by \^pNN(\cdot ;\bfittheta S) \approx p(\cdot ) with \^pNN : \Omega \rightarrow \BbbR and\int 
\Omega 
\^pNN(\bfitx ;\bfittheta 

S)d\bfitx \approx 1.
We should point out that, in our numerical simulations, using the regular L2

norm in the first component of the loss function (3.10) is empirically challenging if
d is moderately large. In our method, one needs to intuitively set up the enclosing
domain \Omega . When d is large, one can either select a complicated domain that covers
data points very tightly (which is difficult to implement) or select a standard domain
(e.g., a d-dimensional box), in which most of the uniformly sampled points are outside
the support of the density. One approach to overcome this issue is using the available
time series from the Markov chain in (2.3) directly as the Monte Carlo integration
points. Since the time series \{ \bfitx n\} Nn=1 are distributed in accordance to \~\pi , using them
as integration points leads to the first component in (3.10) with a weighted norm,
L2(\Omega , \~\pi ). Accordingly, we adjust the Monte Carlo sum in the first component in the
empirical loss function in (3.14). This approach is adopted in the numerical examples
in section 5.

While the convergence analysis corresponding to a weighted norm is equivalent
to that of the unweighted norm when \~\pi is absolutely continuous with respect to
Lebesque measure with bounded density function, for simplicity of the exposition, we
will consider the analysis corresponding to loss functions in (3.10) with unweighted
L2(\Omega ) norms. If the dimension d is lower, one can also adopt numerical quadrature
rules such as Gauss-type quadrature to evaluate the integrals in (3.10) for higher
accuracy.

4. Convergence theory. In this section, we deduce an error bound for the
estimator \^pNN(\bfitx ;\bfittheta 

S), where \bfittheta S is the global minimizer of the empirical loss function
in (3.14). Throughout the discussion in this section, we restrict the diffusion coefficient
\bfitb \in \BbbR d\times m to be a full column rank matrix. We use the notation \| \cdot \| for the Euclidean
norm in \BbbR d.
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52 Y. GU, J. HARLIM, S. LIANG, AND H. YANG

4.1. Preliminary remarks. Let us set the stage for our discussion by specifying
the class of FNNs. In section 3.1, we introduced the general class of FNNs \scrF L,W,\sigma . For
the simplicity of analysis, we choose special classes of FNNs as the hypothesis spaces
of the optimization. Note the FP operator \^\scrL \ast p involves the first derivative of \bfita NN

and the second derivative of p; it suffices to ensure the regularity that \bfita NN \in C1(\Omega )
and \^pNN \in C2(\Omega ) so that the loss function (3.14) is well defined. In practice, the
regularity can be weaker: it suffices to hold almost every where in \Omega , because we only
do computation on a finite number of sample points.

On the one hand, we consider using deep ReLU FNNs with uniform bounds in the
minimization (3.3) for the regression of true drift \bfita (\bfitx ). Specifically, for any P > 0,
we denote

\scrF P
L,W,ReLU = \{ \phi \in \scrF L,W,ReLU : | \phi (\bfitx )| \leq P \forall \bfitx \in \Omega \} (4.1)

as the class of ReLU FNNs with depth L, width W , and a uniform bound P in \Omega . It
is clear that all functions in \scrF P

L,W,ReLU are C1 smooth almost everywhere in \Omega .
On the other hand, we consider using two-layer ReLU3 FNNs with parameter

bounds in the minimization (3.15) for the approximation of the true density p(\bfitx ).
More precisely, for any Q> 0, we explicitly specify

\scrF 2,M, \.\sigma ,Q =

\Biggl\{ 
\phi : \Omega \rightarrow \BbbR , \phi (\bfitx ) =

1

M

M\sum 
m=1

cm \.\sigma (\bfitw \top 
m\bfitx ), | cm| ,\| \bfitw m\| 1 \leq Q

\Biggr\} 
,(4.2)

where M is the width and \.\sigma = max(0, x3/6) denotes the ReLU3 activation function
widely used in network-based methods for second-order PDEs. It is clear that \scrF 2,M, \.\sigma ,Q

are C2 smooth in \Omega . For simplicity, we omit the biases \bfitg \ell in the definition of FNNs
in section 3.1.

Since the analysis depends on the results of the perturbation theory on the ergodic
It\^o diffusion in [74], we will briefly review the concepts of geometric ergodicity and
other relevant results.

We will now make precise the assumptions mentioned in section 2.

Assumption 4.1. The following are key assumptions of the underlying system that
generates the process Xt:

i. Lipschitz and linear growth bound. The vector field \bfita : \BbbR d \rightarrow \BbbR d is
globally Lipschitz with Lipschitz constant \lambda \bfita > 0 to ensure the existence
and uniqueness of the solution of the SDE in (2.1) given an initial condition.
The global Lipschitz assumption also implies the existence of a constant K \in 
(0,+\infty ) such that

\| \bfita (\bfitx )\| 2 \leq K2(1 + \| \bfitx \| 2)\forall \bfitx \in \BbbR d.

This linear growth assumption will ensure that the even order moments can
be bounded under the same rate.

ii. Geometric ergodicity. The Markov process Xt is geometrically ergodic
with a unique invariant measure \pi . See, e.g., Assumptions 2.2--2.3 in [74]
for the detailed conditions to achieve the geometric ergodicity for the SDE
driven by additive Brownian noises. One of the conditions that is important
for our discussion is that there exists a Lyapunov function V : \BbbR d \rightarrow [1,\infty )
with limx\rightarrow \infty V (\bfitx ) =+\infty , and c1, c2 \in (0,+\infty ) such that

\scrL V (\bfitx )\leq  - c1V (\bfitx ) + c2 \forall \bfitx \in \BbbR d,
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STATIONARY DENSITY ESTIMATION USING DEEP LEARNING 53

where \scrL is the L2(\BbbR d) adjoint of the FP operator \scrL \ast defined in (2.2).
iii. Essentially quadratic. The Lyapunov function V = W \ell for some \ell \geq 1,

where W is essentially quadratic; i.e., there exist constants Ci \in (0,+\infty ),
i= 1,2,3, such that

C1

\bigl( 
1 + \| \bfitx \| 2

\bigr) 
\leq W (\bfitx )\leq C2

\bigl( 
1 + \| \bfitx \| 2

\bigr) 
, \| \nabla W (\bfitx )\| \leq C3 (1 + \| \bfitx \| ) \forall \bfitx \in \BbbR d.

Together with the previous two assumptions, there exists \delta 0 > 0 such that,
\forall \delta t\in (0, \delta 0), the discrete Markov chain induced by the EM algorithm in (2.3)
is geometrically ergodic with the invariant measure, \~\pi , and that

sup
f\in \scrG \ell 

| \pi (f) - \~\pi (f)| \leq K1(\delta t)
\nu \pi (V )

for some K1 = K1(\ell ) and \nu \in (0,1/2). In the equation above, \pi (f) :=\int 
\BbbR d f(\bfitx )\pi (d\bfitx ) and \~\pi (f) :=

\int 
\BbbR d f(\bfitx )\~\pi (d\bfitx ) denote the expectation of f under

the invariant measures \pi and \~\pi , respectively. Also, the supremum is defined
over a set of locally Lipschitz functions bounded above by V ,

\scrG \ell :=
\bigl\{ 
f(\bfitx )\leq V (\bfitx )\forall \bfitx \in \BbbR d and

\bigm| \bigm| | f(\bfitx ) - f(\bfity )| (4.3)

\leq C\ell 

\bigl( 
1 + \| \bfitx \| 2\ell  - 1 + \| \bfity \| 2\ell  - 1

\bigr) 
\| \bfitx  - \bfity \| \forall \bfitx ,\bfity \in \BbbR d

\bigr\} 
.

Lemma 4.1. Under Assumption 4.1, for any small 0 < \epsilon \ll 1, suppose that the
estimator \^\bfita : \BbbR d \rightarrow \BbbR d is globally Lipschitz with Lipschitz constant independent of \epsilon 
and is a consistent estimator in the following sense:

\| \bfita (\bfitx ) - \^\bfita (\bfitx )\| 2 \leq K2(1 + \| \bfitx \| 2)\epsilon 2 \forall \bfitx \in \BbbR d,(4.4)

for some constant K2 > 0 that is independent of \epsilon . Let us denote \^Xn := \^Xtn , where
tn = n\delta t, as a Markov chain generated by the solution to

d \^Xt = \^\bfita ( \^Xt)dt+ \^\bfitb dWt, \^X0 =\bfitx ,(4.5)

with \^\bfitb \^\bfitb 
\top 
:= \^\bfitB defined as

\^\bfitB :=
\delta t

N

N\sum 
n=1

(\bfity n  - \^\bfita (\bfitx n)) (\bfity n  - \^\bfita (\bfitx n))
\top 
.

For any \bfitx \in \BbbR d, there exist 0<\rho < 1 and K3 > 0 such that

sup
f\in \scrG \ell 

| \pi (f) - \BbbE \bfitx [f( \^Xn)]| \leq K3

\biggl[ \biggl( 
\rho n +

1 - \rho n

1 - \rho 
\epsilon 

\biggr) 
V (\bfitx )

\biggr] 
\forall n\geq 0,(4.6)

where the set \scrG \ell is defined in (4.3). If the process \^Xt associated to (4.5) has an
invariant measure \^\pi , then there exist 0 < \alpha < 1, 0 < \beta <\infty , and 0 < \gamma < 1 - \alpha such
that \^\pi (V )\leq \beta 

1 - \alpha  - \gamma , where \^\pi (f) =
\int 
\BbbR d f(\bfitx )\^\pi (d\bfitx ).

The result above holds \forall \bfitx \in \BbbR d by requiring the condition in (4.4) and that
underlying process Xt is ergodic in \BbbR d with a unique invariant measure \pi . A similar
conclusion was reported in [23] under a much stronger uniform convergence in place of
(4.4). One of the key issues in applying this result directly to the learning configuration
is that the assumption in (4.4) can be difficult to achieve unless one considers learning
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54 Y. GU, J. HARLIM, S. LIANG, AND H. YANG

with a loss function defined with the topology that is used to deduce the error bound
in (4.6), which relies on the perturbation theory of Markov chain. The usual practical
machine learning computations solve a supervised learning problem induced by a
weaker topology (commonly L2) on a bounded domain. In such a weaker topology
(relative to the sup norm in (4.6)), one can at best expect to construct an estimator
with convergence guaranteed under an L2(\Omega , \~\pi ) error on a compact domain \Omega \supset \scrX 
that contains all the training data. In the numerical section, we will empirically
show the pointwise accuracy of \bfita and verify the accuracy of the invariant mean and
covariance statistics induced by a Markov chain generated by the estimated drift and
diffusion coefficients.

To overcome the incompatibility of the domains, we consider the following as-
sumption.

Assumption 4.2. Define X as a random variable corresponding to the invariant
measure \pi . Let \Omega \subset \BbbR d be a simply connected compact domain such that P (X /\in 
\Omega )\leq \epsilon 0 for some 0< \epsilon 0 \ll 1. For example, let \Omega :=B(0,R) = \{ \bfitx \in \BbbR d : \| \bfitx \| \leq R\} be a
closed Euclidean ball of radius R> 1, and suppose that X has mean zero (centered)
and is a subexponentially distributed random variable, SE(\nu 2, \alpha ), with \nu ,\alpha > 0; then
by concentration inequality for subexponential distribution, one obtains

\BbbP (\| X\| \geq R)\leq 2e - 
R
2\alpha \forall R> \nu 2\alpha  - 1.(4.7)

Let \~X be a random variable corresponding to the stationary distribution induced by
the EM discretization in (2.3). Using the Markov inequality and strong error bound
of EM scheme, one can deduce that \BbbP [\| X  - \~X\| \geq (\delta t)1/4] \leq (\delta t) - 1/4\BbbE [\| X  - \~X\| ] \leq 
C(\delta t)1/4, which means that

\BbbP 
\Bigl[ 
\| \~X\| \geq R+ (\delta t)1/4

\Bigr] (4.8)

\leq \BbbP 
\Bigl[ \Bigl\{ 

\| \~X\| \geq R+ (\delta t)1/4
\Bigr\} 
\cap 
\Bigl\{ 
\| X\| \geq R

\Bigr\} \Bigr] 
+ \BbbP 

\Bigl[ \Bigl\{ 
\| \~X\| \geq R+ (\delta t)1/4

\Bigr\} 
\cap 
\Bigl\{ 
\| X\| <R

\Bigr\} \Bigr] 
\leq \BbbP [\| X\| \geq R] + \BbbP 

\Bigl[ 
\| X  - \~X\| \geq (\delta t)1/4

\Bigr] 
\leq 2e - 

R
2\alpha +C(\delta t)1/4 := \epsilon 0.

Even if X (resp., \~X) is defined on \BbbR d, one can almost surely realize \| X\| \leq R (resp.,
\| \~X\| \leq R+ \delta t1/4) for large enough R> 0. This assumption effectively means that the
process X satisfies Assumption 4.2 for \bfitx \in \Omega =B(0,R) almost surely for large enough
R. This also implies that Lemma 4.1 is valid for \bfitx \in \Omega , where we now understood
\pi (f) :=

\int 
\Omega 
f(\bfitx )\pi (d\bfitx ) in (4.6) as an integral with respect to a computational domain

\Omega . In the convergence theory below, without loss of generality, we will assume that
\Omega = [0,1]d. For a general box \Omega , similar results can be derived easily by rescaling \Omega 
to [0,1]d with an isomorphic map. In this case, the concentration inequality (4.7) is
still valid for \| \cdot \| \infty norm since \| \bfitx \| \infty \geq \| \bfitx \| /

\surd 
d\geq R/

\surd 
d for any \bfitx in a box of radius

R/
\surd 
d, inscribed in the d-dimensional ball of radius R.

With the above assumption, we only need to restrict our attention to a compact
domain \Omega , and hence, the assumption that \^\bfita is globally Lipschitz (on a compact
hypercube \Omega ) with Lipschitz constant independent of \epsilon can be justified as follows.
Particularly, in our algorithm, we use the ReLU activation functions to construct
\^\bfita , and hence, \^\bfita is a globally Lipschitz continuous function. By the simultaneous
approximation of ReLU neural networks in [18, 22], as long as \bfita \in Cs(\BbbR d) with s > 1,
there exists a ReLU network \^\bfita approximating \bfita in the Sobolev norm of W 1,\infty (\Omega ).
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STATIONARY DENSITY ESTIMATION USING DEEP LEARNING 55

For a convex hypercube \Omega , this also means that the Lipschitz constant of \^\bfita can be
controlled by the Lipschitz constant of \bfita plus a sufficiently large constant. Hence,
there exists an estimator \^\bfita such that the Lipschitz constant of \^\bfita can be independent
of \epsilon . However, how to identify \^\bfita satisfying these assumptions is a problem of the
optimization algorithm.

For the rest of this paper, we use the notations \~\pi (f) =
\int 
\Omega 
f(\bfitx )\~\pi (d\bfitx ) and \^\pi (f) =\int 

\Omega 
f(\bfitx )\^\pi (d\bfitx ) for integrals over \Omega . With Assumption 4.2, we now let the solution

\^p : \Omega \rightarrow (0,\infty ) of the approximate FP equation be the density of \^\pi , defined with
respect to the Lebesque measure, d\^\pi = \^p(x)dx. Since the PDE in (3.8) is defined with
the estimated coefficients, namely, \bfita NN : \Omega \rightarrow \BbbR d as defined in (3.4) and \bfitB NN \in \BbbR d\times d

as defined in (3.6), the error analysis below will need to account for the errors induced
by these estimations. Recall that \bfitb is a constant matrix and that \bfita NN is the best
empirical estimator from the chosen hypothesis space (e.g., a class of FNN-functions of
the chosen architecture), obtained by regressing the labeled training data \{ \bfitx n,\bfity n\} Nn=1,

where \bfitx n \in \scrX and \bfity n := \bfitx n+1 - \bfitx n

\delta t = \bfita (\bfitx n) + \bfiteta n, \bfiteta n \sim \scrN (0, (\delta t) - 1\bfitb \bfitb \top ). We can now
quantify the error of the diffusion estimator in terms of the L2 error of the drift
estimator.

Lemma 4.2. Let Assumption 4.2 be valid. Define

\epsilon := \delta t\BbbE \~\pi 

\Bigl[ 
\| (\bfita (X) - \bfita NN(X;\bfittheta a)\| 2

\Bigr] 
> 0,(4.9)

where \~\pi is the invariant measure corresponding to i.i.d. samples \{ \bfitx n\} Nn=1 for a fixed
\delta t > 0. Then there exist some \beta > 0 that can depend on the Lipschitz constant of \bfita NN

and \delta t such that

\| \bfitb \bfitb \top  - \bfitB NN\| 2 \leq 2\epsilon 

with probability higher than 1 - 2de
 - \epsilon 2

2\beta 2N - 1+ 4
3
\beta N - 1\epsilon .

We should point out that the i.i.d. assumption is only for the convenience of the
theoretical analysis below. While i.i.d. samples can be attained by subsampling from
the realization \{ \bfitz n\} n\geq 0 of a Markov chain generated by the EM scheme in (2.3) to
reduce the correlation, we used the correlated samples in our numerical simulations.
For the reader's convenience, we quote the following matrix concentration bound that
is used for proving the result above.

Lemma 4.3 (Theorem 1.6.2 in [62] adopted to our notation). Let D1, . . . ,DN \in 
\BbbR d\times d be independent, symmetric, centered random matrices and \| Dn\| 2 \leq L \forall n =
1, . . . ,N . Here, \| \cdot \| 2 denotes the spectral norm of a matrix. Let D =

\sum N
n=1Dn and

v(D) = \| \BbbE [D2]\| 2. Then for any \epsilon > 0,

\BbbP [\| D\| 2 \geq \epsilon ]\leq 2d exp

\biggl( 
 - \epsilon 2

2v(D) + 2
3L\epsilon 

\biggr) 
.

Proof of Lemma 4.2. To quantify the error of the diffusion estimator, one can
subtract \bfitb \bfitb \top from the empirical estimator defined in (3.6) and derive the following
upper bound:

\| \bfitb \bfitb \top  - \bfitB NN\| 2 \leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N\sum 

n=1

Dn

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

+ \delta t\BbbE \~\pi 

\Bigl[ 
\| (\bfita (X) - \bfita NN(X;\bfittheta a))\| 2

\Bigr] 
,(4.10)
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where, for each n= 1, . . . ,N ,

Dn :=
\delta t

N

\bigl( 
\bfity n  - \bfita NN(\bfitx 

n;\bfittheta a)
\bigr) \bigl( 
\bfity n  - \bfita NN(\bfitx 

n;\bfittheta a)
\bigr) \top 

(4.11)

 - 1

N

\Bigl( 
\delta t\BbbE \~\pi [(\bfita (X) - \bfita NN(X;\bfittheta a))(\bfita (X) - \bfita NN(X;\bfittheta a))\top ] + \bfitb \bfitb \top 

\Bigr) 
is an independent, random, symmetric matrix of mean zero. To simplify the notation,
we define

\bfitz n := (\delta t)1/2(\bfity n  - \bfita NN(\bfitx 
n;\bfittheta a))

such that we can rewrite

Dn =
1

N
(\bfitz n\bfitz 

\top 
n  - A),

where A=\BbbE [\bfitz n\bfitz 
\top 
n ] with expectation taken jointly with respect to \~\pi and the Gaussian

random variable \bfiteta . By Assumption 4.2, \bfitx n is bounded almost surely on \Omega =B(0,R).
Since both \bfita and \bfita NN are Lipschitz, we have

\| \bfitz n\| = \| (\delta t)1/2(\bfity n  - \bfita NN(\bfitx 
n;\bfittheta a))\| 

\leq 
\bigm\| \bigm\| \bigm\| \bigm\| \bfitx n+1  - \bfitx n

(\delta t)1/2
 - (\delta t)1/2\bfita NN(\bfitx 

n;\bfittheta a))

\bigm\| \bigm\| \bigm\| \bigm\| 
\leq 
\Bigl( 
(\delta t) - 1/2

\Bigl( 
\| \bfitx n+1\| + \| \bfitx n\| 

\Bigr) 
+ (\delta t)1/2\| \bfita NN(\bfitx 

n;\bfittheta a)\| 
\Bigr) 
\leq 
\sqrt{} 
\beta 

for some \beta > 0 that depends on the Lipschitz constant of \bfita NN and \delta t. Therefore,

\| Dn\| 2 =
1

N
\| \bfitz n\bfitz 

\top 
n  - A\| 2 \leq 

1

N
(\| \bfitz n\bfitz 

\top 
n \| 2 + \| A\| 2)\leq 

2\beta 

N
,

where the first term is immediate from the boundedness of \bfitz i and the second term
follows from

\| A\| 2 = \| \BbbE (\bfitz n\bfitz 
\top 
n )\| 2 \leq \BbbE \| \bfitz n\bfitz 

\top 
n \| 2 \leq \beta .

Here, we have used the Jensen inequality in the above and the boundedness of \bfitz i.
Next, we compute

\BbbE [D2
n] =

1

N2
\BbbE 
\Bigl[ 
(\bfitz n\bfitz 

\top 
n  - A)2

\Bigr] 
=

1

N2
\BbbE 
\Bigl[ 
\| \bfitz n\| 2\bfitz n\bfitz 

\top 
n  - A\bfitz n\bfitz 

\top 
n  - \bfitz n\bfitz 

\top 
nA+A2

\Bigr] 
\preceq 1

N2
\beta \BbbE [\bfitz n\bfitz 

\top 
n ] - A2 \preceq \beta 

N2
A,(4.12)

where A \preceq B means that B  - A is positive semidefinite. Since \{ Dn\} are i.i.d., by
(4.12), we have

v(D) = \| \BbbE [D2]\| 2 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N\sum 

n=1

\BbbE [D2
n]

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq \beta 

N
\| A\| 2 \leq 

\beta 2

N
.

With these bounds, the conclusion follows directly from Lemma 4.3.

This means that with high probability the first term in (4.11) can be bounded by
\epsilon > 0 with large enough sample size, N \geq 2\beta 2\epsilon  - 2 log 2d. Based on this result, we let \epsilon 
be the generalization error rate as defined in (4.9).
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We should point out that the result in Lemma 4.1 does not assume the ergodicity
of the Markov process \^Xt generated by the SDE in (4.5). Suppose that \^Xt is generated

with \^\bfita = \bfita NN and that \^\bfitb \^\bfitb 
\top 
= \bfitB NN has an invariant measure \^\pi on \Omega . Integrating

(4.6) with respect to \^\pi , we obtain

\bigm| \bigm| \bigm| \pi (f) - \^\pi (f)
\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \pi (f) - \int 

\Omega 

f(\bfitx )\^\pi (d\bfitx )
\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \pi (f) - \int 

\Omega 

\BbbE \bfitx [f( \^Xn)]\^\pi (d\bfitx )
\bigm| \bigm| \bigm| \leq K3\^\pi (V )\epsilon 

(4.13)

as n \rightarrow \infty . To obtain (4.13), we have used (4.6). With this background, the error
bound for \^pNN(\bfitx ;\bfittheta 

S) can be deduced by accounting for the regression error of a and
the error from the proposed PDE solver,\bigm| \bigm| \bigm| \pi (f) - \int 

\Omega 

f(\bfitx )\^pNN(\bfitx ;\bfittheta 
S)d\bfitx 

\bigm| \bigm| \bigm| (4.14)

\leq 
\bigm| \bigm| \bigm| \pi (f) - \int 

\Omega 

f(\bfitx )\^p(\bfitx )d\bfitx 
\bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \int 

\Omega 

f(\bfitx )
\bigl( 
\^p(\bfitx ) - \^pNN(\bfitx ;\bfittheta 

S)
\bigr) 
d\bfitx 
\bigm| \bigm| \bigm| 

\leq K3\^\pi (V )\delta t\BbbE \~\pi 

\Bigl[ 
\| (\bfita (X) - \bfita NN(X;\bfittheta a)\| 2

\Bigr] 
\underbrace{}  \underbrace{}  

(I)

+\| f\| L2(\Omega ) \| \^p - \^pNN(\cdot ;\bfittheta S)\| L2(\Omega )\underbrace{}  \underbrace{}  
(II)

,

where we have used (4.13), (4.9), and the Cauchy--Schwarz inequality. In the next
two subsections, we will bound the terms (I) and (II) in (4.14).

4.2. Regression error for the drift estimator. Now let us consider the error
in the regression of the drift coefficients, namely, the minimization problem (3.3). We
will derive the L2 error with respect to \~\pi between the estimator \bfita NN(\bfitx ;\bfittheta 

a) and the
true drift function \bfita (\bfitx ). For this purpose, given a class \scrF of functions, \Omega \rightarrow \BbbR , we de-
note its pseudodimension by Pdim(\scrF ), which is the largest integer m for which there
is some (\bfitx 1, . . . ,\bfitx m, y1, . . . , ym) \in \Omega m \times \BbbR m such that, for any (b1, . . . , bm) \in \{ 0,1\} m,
there exists f \in \scrF satisfying f(\bfitx i) > yi \leftrightarrow bi = 1\forall i. Note the pseudodimension is a
generalization of the Vapnik--Chervonenkis dimension to real-valued function classes
[65]. If the class consists of binary-valued functions, the two concepts are equivalent.
Thus the only extra feature of pseudodimension is the possibility of introducing the
``off-set"" vector (y1, . . . , ym) \in \BbbR m. Based on [5], one can estimate the pseudodimen-
sion of the FNN class with Pdim(\scrF L,W,\sigma ) = O(L2W 2 log(LW 2)) if \sigma is a piecewise
linear activation function. For sigmoid activation functions, an upper bound of the
pseudodimension can be found in [2].

The prediction error analysis of FNNs has been studied in several papers, e.g., [7,
14, 29, 40, 42, 45, 50, 56]. In particular, we introduce the following lemma concerning
the prediction error of the FNN-based least squares regression, which is studied in
[29].

Lemma 4.4 [29, Theorem 4.2]. Let f0 : [0,1]d \rightarrow \BbbR be a H\"older continuous
function; i.e., there exist \lambda \geq 0 and \alpha \in (0,1] such that | f0(x) - f0(y)| \leq \lambda \| \bfitx  - \bfity \| \alpha 
\forall \bfitx ,\bfity \in [0,1]d. Suppose \| f0\| L\infty ([0,1]d) \leq P for some P \geq 1. Let \nu be a probability
measure that is absolutely continuous with respect to the Lebesgue measure and a
random variable \bfitx \sim \nu . Let \eta be a random variable with mean 0 and finite variance.
Let \{ \bfitx n\} Nn=1 be N i.i.d. samples of \bfitx , and yn = f0(\bfitx 

n)+ \eta is the response with noise
\eta for each n. For any I1, I2 \in \BbbN +, let

\bfittheta f0 := argmin
\bfittheta 

1

N

N\sum 
n=1

| yn  - fNN(\bfitx 
n;\bfittheta )| 2 ,
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58 Y. GU, J. HARLIM, S. LIANG, AND H. YANG

where fNN \in \scrF P
L,W,ReLU has depth L = 12I2 + 14 and width W = max\{ 4d\lfloor I

1
d
1 \rfloor +

3d,12I1 + 8\} for all hidden layers. Then the prediction error is given by

\BbbE \nu 

\Bigl[ 
| fNN(\cdot ,\bfittheta f0) - f0| 2

\Bigr] 
(4.15)

\leq C
\Bigl[ 
P 2WL(d+WL) log(Wd+W 2L)(logN)3N - 1 + \lambda 2d(I1I2)

 - 4\alpha /d
\Bigr] 

for N \geq Pdim(\scrF P
L,W,ReLU), where C is a constant that does not depend on d, N , L,

W , \lambda , \alpha , I1, I2, P .

In Lemma 4.4, the exponent of the error bound in (4.15) can be improved to
be dimension-independent if we assume f0 is in Barron-type spaces, which are first
studied in [4] and further developed in [9, 15, 40, 60, 67]. Here we follow the Barron
space with respect to two-layer ReLU networks proposed in [67]. Suppose f : \Omega \rightarrow \BbbR 
is a function of the form

f(\bfitx ) =

\int 
\BbbR \times \BbbR d

cmax(\bfitw \top \bfitx ,0)\rho (dc,d\bfitw ) =\BbbE \rho [cmax(\bfitw \top \bfitx ,0)], \bfitx \in \Omega ,

for some probability measure \rho on \BbbR \times \BbbR d: then its Barron norm is defined by

\| f\| \scrB \mathrm{R}\mathrm{e}\mathrm{L}\mathrm{U} = inf
\rho \in Pf

(\BbbE \rho | c| \| \bfitw \| 1),(4.16)

where Pf := \{ \rho : f(\bfitx ) = \BbbE \rho [cmax(\bfitw \top \bfitx ,0)]\} . The corresponding ReLU Barron space
is defined by \scrB ReLU = \{ f \in C0 : \| f\| \scrB \mathrm{R}\mathrm{e}\mathrm{L}\mathrm{U}

<\infty \} . Now we have the following result.

Lemma 4.5. Let f0 : [0,1]
d \rightarrow \BbbR such that \| f0\| \scrB \mathrm{R}\mathrm{e}\mathrm{L}\mathrm{U} \leq P and \| f0\| L\infty ([0,1]d) \leq P

for some P \geq 1. For the least squares regression proposed in Lemma 4.4, we let
fNN \in \scrF P

2,W,ReLU for some W \in \BbbN +. Then the prediction error is given by

\BbbE \nu 

\Bigl[ 
| fNN(\cdot ,\bfittheta f0) - f0| 2

\Bigr] 
(4.17)

\leq C
\bigl[ 
P 2W (d+W ) log(Wd+W 2)(logN)3N - 1 + \| f0\| 2\scrB \mathrm{R}\mathrm{e}\mathrm{L}\mathrm{U}

dW - 1
\bigr] 

for N \geq Pdim(\scrF P
2,W,ReLU), where C is a constant that does not depend on d, N , W ,

f0, P .

Proof. See Appendix A.

In our case, we set in the hypothesis of Lemma 4.4 that L=O(I2) andW =O(I1)
are both large integers. Combining with Lemma 4.5, the error estimation for the
minimization problem (3.3) can be directly obtained.

Lemma 4.6. In addition to Assumption 4.1, we let \~\pi be absolutely continuous
with respect to the Lebesgue measure. Denote P\bfita =max\{ \| \bfita \| L\infty (\Omega ),1\} .

1. Let L and W be integers large enough; then the estimator \bfita NN defined in
(3.4) with components aNN \in \scrF P\bfita 

L,W,ReLU satisfies

\BbbE \~\pi 

\bigl[ 
| \bfita NN  - \bfita | 2

\bigr] 
\leq C\bfita 

\Bigl( 
d2WLN - 1 + d(WL)2N - 1 + d2(WL) - 4/d

\Bigr) 
(4.18)

for N \geq Pdim(\scrF P\bfita 

L,W,ReLU).
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STATIONARY DENSITY ESTIMATION USING DEEP LEARNING 59

2. Suppose that all components of \bfita are in \scrB ReLU with Barron norms no greater
than P\bfita . Let W \in \BbbN +; then the estimator \bfita NN defined in (3.4) with compo-
nents aNN \in \scrF P\bfita 

2,W,ReLU satisfies

\BbbE \~\pi 

\bigl[ 
| \bfita NN  - \bfita | 2

\bigr] 
\leq C\bfita 

\bigl( 
d2WN - 1 + dW 2N - 1 + d2W - 1

\bigr) 
(4.19)

for N \geq Pdim(\scrF P\bfita 

2,W,ReLU),
where C\bfita > 0 is a term that depends on \bfita and at most a polynomial in the logarithm
of N , L, W .

In Lemma 4.6, the Barron assumption on the target function helps to overcome
the curse of dimensionality. In the following analysis for the solution error in the
approximate FP equation, we will specify a Barron space for ReLU3 networks and
assume that the true solution is in this space; therefore the derived solution error also
depends on the dimension at most quadratically.

4.3. Solution error for the approximate FP equation. Now let us consider
the error between \^pNN(\cdot ;\bfittheta S) and the true solution \^p of the approximate stationary
FP equation (3.8). In this section, we only consider the case that \{ \bfitx n

MC\} 
N1
n=1 in (3.12)

are uniformly distributed in \Omega . Similar results apply to other measures with smooth
densities supported on \Omega .

We rewrite the approximate stationary FP equation (3.7) in the following diver-
gence form:

(4.20)  - \^\scrL \ast \^p= - 
d\sum 

i,j=1

\biggl( 
1

2
Bij

NN\^pxj

\biggr) 
xi

+

d\sum 
i=1

aiNN\^pxi +

\Biggl( 
d\sum 

i=1

\partial aiNN

\partial xi

\Biggr) 
\^p= 0 in \Omega .

The error analysis is valid only when (4.20) is well-posed. So we need to set up
specific assumptions on the coefficients of (4.20). First, note that \bfitB NN is positive
semidefinite and that (4.20) is elliptic, so we assume further that (4.20) is nondegen-
erate by specifying the smallest eigenvalue of \bfitB NN as a positive number. Also, we
assume that the coefficients have a uniform bound, which is common in the analysis
of elliptic equations.

Assumption 4.3. The smallest eigenvalue of the symmetric matrix \bfitB NN, denoted
as \Lambda , is positive. Besides, | Bij

NN| < 2B1, | aiNN(\bfitx )| < B1, | 
\sum d

i=1 \partial a
i
NN(\bfitx )/\partial xi| < B1,

\forall i, j and \forall \bfitx \in \Omega , for some B1 > 0 .

Next, considering (4.20) is defined in a compact domain, we cannot guarantee
the uniqueness of the solution \^p since no boundary condition is specified. Moreover,
even if we impose a boundary condition, say Dirichlet condition \^p= g on \partial \Omega , we still
need extra assumptions on the coefficients to ensure the uniqueness. For the latter,
it suffices to take the following assumption.

Assumption 4.4.\int 
\Omega 

d\sum 
i=1

aiNNvxi
\cdot v+

\Biggl( 
d\sum 

i=1

\partial aiNN

\partial xi

\Biggr) 
v2d\bfitx \geq 0 \forall v \in H1(\Omega ).

Under Assumption 4.4, one can show that (4.20) with any Dirichlet condition
admits a unique solution by the Fredholm alternative and Lax--Milgram theorem.
However, we cannot specify such a boundary condition since no information on \partial \Omega is
provided. Fortunately, we note that the true density p vanishes as | x| \rightarrow \infty , so it can
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60 Y. GU, J. HARLIM, S. LIANG, AND H. YANG

be assumed that the approximate density \^p has a similar behavior. Although we do
not specify any boundary value for \^p, we can assume that \^p ``almost"" vanishes on \partial \Omega 
as follows.

Assumption 4.5. Let \| \^p\| L\infty (\partial \Omega ) \leq \epsilon \^p and \| \^p\| H1(\partial \Omega ) \leq \epsilon \^p for some small positive
number \epsilon \^p > 0.

Under Assumptions 4.4 and 4.5, it can be shown that any two solutions of (4.20)
are close to each other with accuracy \epsilon \^p by standard elliptic equation analysis. Now
we indicate that the error \| q  - \^p\| L2(\Omega ) for any function q is bounded by the loss
function J [q] and \epsilon \^p.

Lemma 4.7. Assume \^p is a classical solution of (3.8) with the condition (3.9).
Let q \in C2(\=\Omega ), and assume \| \nabla q\| L2(\partial \Omega ) \leq B2 for some B2 > 0. If Assumptions 4.3--4.5
hold, then

\| q - \^p\| 2L2(\Omega ) \leq C
\Bigl( 
J [q] + d(1 + \epsilon \^p)J [q]

1
2 + d(1 + \epsilon \^p)\epsilon \^p

\Bigr) 
,

where C only depends on \Omega , \Lambda , B1, B2, \lambda 1, \lambda 2.

Proof. See Appendix A.

Next, we estimate J [\^p] via the generalization analysis of FNNs. In the analysis,
we redefine the Barron space for two-layer ReLU3 networks and assume \^p is in this
Barron space. The definition directly follows the ReLU Barron space proposed in
section 4.2 except that we replace the ReLU activation with the ReLU3 activation.
Accordingly, we slightly modify the Barron norm, which is also proposed in [42].
Recall that \.\sigma denotes the ReLU3 activation function, i.e., \.\sigma =max(0, x3/6).

Suppose f : \Omega \rightarrow \BbbR is a function of the form

f(\bfitx ) =

\int 
\BbbR \times \BbbR d

c \.\sigma (\bfitw \top \bfitx )\rho (dc,d\bfitw ) =\BbbE \rho [c \.\sigma (\bfitw 
\top \bfitx )], \bfitx \in \Omega ,

for some probability measure \rho on \BbbR \times \BbbR d; then its ReLU3 Barron norm is
defined by

\| f\| \scrB \.\sigma = inf
\rho \in Pf

(\BbbE \rho | c| \| \bfitw \| 31),(4.21)

where Pf := \{ \rho : f(\bfitx ) = \BbbE \rho [c \.\sigma (\bfitw 
\top \bfitx )]\} . And the ReLU3 Barron space is defined by

\scrB \.\sigma = \{ f \in C0 : \| f\| \scrB \.\sigma 
<\infty \} . Now let us derive the uniform approximation of FNNs

in \scrF 2,M, \.\sigma ,Q for Barron functions.

Lemma 4.8. Given f \in \scrB \.\sigma , there exist some pNN \in \scrF 2,M, \.\sigma ,max\{ \| f\| \scrB \.\sigma 
/M,1\} such

that

sup
\bfitx \in \Omega 

\bigm| \bigm| \bigm| \^\scrL \ast pNN(\bfitx ) - \^\scrL \ast f(\bfitx )
\bigm| \bigm| \bigm| + sup

\bfitx \in \Omega 
| pNN(\bfitx ) - f(\bfitx )| + sup

\bfitx \in \partial \Omega 
| pNN(\bfitx ) - f(\bfitx )| (4.22)

\leq (4B1 + 2)\| f\| \scrB \.\sigma 

\sqrt{} 
d/M

Proof. See Appendix A.

Next, we introduce the error estimate for the Monte Carlo integration, which can
be directly proved using Hoeffding's inequality.
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STATIONARY DENSITY ESTIMATION USING DEEP LEARNING 61

Lemma 4.9. Given a compact domain \Omega , suppose f : \Omega \rightarrow \BbbR is a function with
\| f\| \infty <\infty . Let \{ \bfitx n\} Nn=1 be a set of uniformly distributed points in \Omega . Then for any
\delta \in (0,1), with probability at least 1 - \delta over the choice of \bfitx n,\bigm| \bigm| \bigm| \bigm| \bigm| 1N

N\sum 
n=1

f(\bfitx n) - 
1

| \Omega | 

\int 
\Omega 

f(\bfitx )d\bfitx 

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\sqrt{} 

2\| f\| 2\infty log(2/\delta )

N
.

Now, the error estimate for the approximate FP equation is given as follows.

Lemma 4.10. Under Assumptions 4.3--4.5, we further assume \^p \in \scrB \.\sigma . Let \bfittheta S =
argmin\bfittheta JS [\^pNN(\cdot ,\bfittheta )] with \^pNN \in \scrF 2,M, \.\sigma ,Q. Also, suppose \{ \bfitx n

I \} 
N1
n=1 \subset \Omega , \{ \bfitx n

II\} 
N2
n=1 \subset \Omega ,

\{ \bfitx n
III\} 

N3
n=1 \subset \partial \Omega in (3.14) are uniformly distributed. Then for any \delta \in (0,1), with

probability of at least 1 - \delta over the choice of these points,

\| \^pNN(\bfitx ;\bfittheta 
S) - \^p\| 2L2(\Omega )

(4.23)

\leq C
\Bigl( 
J [\^pNN(\bfitx ;\bfittheta 

S)] + d(MQ4d
1
2 + \epsilon \^p)J [\^pNN(\bfitx ;\bfittheta 

S)]
1
2 + d(MQ4d

1
2 + \epsilon \^p)\epsilon \^p

\Bigr) 
,

and

J [\^pNN(\bfitx ;\bfittheta 
S)]\leq C [I1(Q,d, \delta ,M,N1,N2,N3) + I2(Q,\delta ,M,N2) + I3(\^p, d, \delta ,M,N2)] ,

with

I1 = (Q8 + 1)
\Bigl( 
d2
\sqrt{} 

log(d) + log(Q4 + 1) +
\sqrt{} 

log(1/\delta )
\Bigr) 
M2(1/

\sqrt{} 
N1 + 1/

\sqrt{} 
N3),

I2 =MQ4
\sqrt{} 
log(6/\delta )/N2

\Bigl( 
MQ4(

\sqrt{} 
log(6/\delta )/N2 + 1) + 1

\Bigr) 
,

I3 = \| \^p\| 2\scrB \.\sigma 
d/M + \| \^p\| 2\infty log(6/\delta )/N2 + \epsilon 2\^p,

where C only depends on \Omega , \Lambda ,B1, \lambda 1, and \lambda 2. Especially, suppose that J [\^pNN(\bfitx ;\bfittheta 
S)]

\leq 1 and Np :=min\{ N1,N2,N3\} . Take Q\leq O(M - 1
4 d - 

1
8 ) and Np \geq O(log(1/\delta )); then

\| \^pNN(\bfitx ;\bfittheta 
S) - \^p\| 2L2(\Omega ) \leq O

\Bigl( 
d2(log(d))

1
4MN

 - 1
4

p + d
3
2M - 1

2 + dN
 - 1

2
p + d\epsilon \^p

\Bigr) 
,

with an order constant depending on \Omega , \Lambda ,B1, \lambda 1, \lambda 2, \delta , and \^p.

Proof. See Appendix A.

The result in Lemma 4.10 implies that, when Np \sim O(Ms) with s > 4, the error
reduces to O(d\epsilon \^p) as M,Np \rightarrow \infty . In practice, as an approximation to the original
density p that vanishes as \| \bfitx \| \rightarrow \infty , the solution \^p could have a similar decaying
behavior as p. Hence \epsilon \^p is small enough if \Omega is moderately large. And this also leads
to a small solution error \| \^pNN  - \^p\| 2L(\Omega ).

4.4. The main error estimation. Inserting the two error bounds in Lemmas
4.6 and 4.10 into the inequality in (4.14) and collecting all the assumptions, we can
show the following main theorem for the error estimation of the proposed algorithm.

Theorem 4.1. Let \pi be the invariant measure of a Markov process Xt that sat-
isfies Assumptions 4.1 and 4.2. Let P\bfita \geq 1 such that \| \bfita \| L\infty (\Omega ) \leq P\bfita . Given dis-
crete samples \{ \bfitx n\} Nn=0 of an ergodic measure \~\pi that is absolutely continuous with
respect to the Lebesque measure in \BbbR d, suppose that \bfita NN defined by (3.4) with com-
ponents aNN \in \scrF P\bfita 

L,W,ReLU is a consistent estimator in the sense of (4.4) \forall \bfitx \in \Omega =
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62 Y. GU, J. HARLIM, S. LIANG, AND H. YANG

[0,1]d. Suppose also that N \geq Pdim(\scrF L,W,ReLU). Let the assumptions in Lemma
4.10 be valid, namely, Assumptions 4.3--4.5. Suppose that \^p \in \scrB \.\sigma is estimated by
\^pNN(\cdot ,\bfittheta S) \in \scrF 2,M, \.\sigma ,Q with Q \leq O(M - 1

4 d - 
1
8 ), where \bfittheta S is the global minimizer of

the empirical loss function (3.14). Then, \forall f \in \scrG \ell as defined in (4.3) and for any
\delta \in (0,1), with probability of at least 1 - \delta over the choice of \{ \bfitx n

I \} 
N1
n=1, \{ \bfitx n

II\} 
N2
n=1, and

\{ \bfitx n
III\} 

N3
n=1,

sup
f\in \scrG \ell 

\bigm| \bigm| \bigm| \pi (f) - \int 
\Omega 

f(\bfitx )\^pNN(\bfitx ,\bfittheta 
S)d\bfitx 

\bigm| \bigm| \bigm| 
\leq K3\^\pi (V )\delta tC\bfita 

\Bigl( 
d2WLN - 1 + d(WL)2N - 1 + d2(WL) - 4/d

\Bigr) 
+C\^p

\Bigl( 
d2(log(d))

1
4MN

 - 1
4

p + d
3
2M - 1

2 + dN
 - 1

2
p + d\epsilon \^p

\Bigr) 
\sim O

\Bigl( 
d2
\Bigl( 
W 2L2N - 1 +W - 4/dL - 4/d +MN - 1/4

p +M - 1/2 + \epsilon \^p

\Bigr) \Bigr) 
,

(4.24)

where Np :=min\{ N1,N2,N3\} that satisfies Np \geq O(log(1/\delta )). Here, the term C\bfita > 0
depends on \bfita , and at most a polynomial in the logarithm of N , L, W , and the con-
stant C\^p > 0 depends on \Omega , \delta , \^p, \| f\| L2(\Omega ), the regularization weights \lambda 1, \lambda 2, and the
upper bounds constants \Lambda ,B1 defined in Assumption 4.3.

The error bound that only depends on the dimension quadratically is given as
follows.

Theorem 4.2. Under the hypothesis of Theorem 4.1, we further assume that
all components of \bfita are in \scrB ReLU with Barron norms no greater than P\bfita , and let
aNN \in \scrF P\bfita 

2,W,ReLU; then the error bound term d2WLN - 1+d(WL)2N - 1+d2(WL) - 4/d

in (4.24) can be improved to be d2WN - 1 + dW 2N - 1 + d2W - 1, and the entire bound

is of O(d2(W 2N - 1 +W - 1 +MN
 - 1/4
p +M - 1/2 + \epsilon \^p)).

We should point out that, while the results are valid for a global minimizer \bfittheta a
i

in (3.3) and \bfittheta S in (3.15), we do not specify the condition for which such global
minimizers are attainable. We implicitly assume that a minimizer is found and do not
consider the error from the optimization algorithms. In practice, one cannot ensure
that a global minimizer can be necessarily found by usual optimizers like gradient
descent.

Moreover, throughout the convergence analysis, we consider using special FNN
class (4.1) with uniform bounds or (4.2) with parameter bounds as the hypothesis
space and derive corresponding approximation errors. However, in practical deep
learning, one usually uses the general FNN class \scrF L,W,\sigma since it is closed under gra-
dient descent optimizers and therefore easy for implementation.

5. Numerical examples. In this section, we numerically demonstrate the ef-
fectiveness of our proposed methods on two test problems. The first example is a
two-dimensional SDE with Student's t--stationary distribution. The second example
is a 20-dimensional Langevin dynamics associated to Lennard--Jones potential with
the Gibbs invariant measure.

In our examples, we directly use the available dataset \scrX := \{ \bfitx 0, . . . ,\bfitx N - 1\} 
as the Monte Carlo integration points. Hence in the mathematical sense, we re-
place the norm in the first term in (3.10) with a weighted L2(\Omega , \~\pi ), recalling that
\~\pi denotes the stationary measure of the discrete Markov chain induced by (2.3).
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STATIONARY DENSITY ESTIMATION USING DEEP LEARNING 63

Empirically, we approximate the first term of (3.10) via the following Monte Carlo
average:

\| \^\scrL q\| 2L2(\Omega ,\~\pi ) \approx 
1

| \scrX \cap \Omega | 

N - 1\sum 
n=0

\bigm| \bigm| \bigm| \^\scrL q(\bfitx n)
\bigm| \bigm| \bigm| 21\Omega (\bfitx 

n),(5.1)

where 1\Omega denotes the characteristic function over the domain \Omega .

5.1. Student's t-distribution. Consider a two-dimensional SDE (2.1) for Stu-
dent's t-distribution [3] with

\bfita (\bfitx ) =

\biggl[ 
 - 3

2x1 + x2
1
4x1  - 

3
2x2

\biggr] 
, \bfitb (\bfitx ) =

\Biggl[ \sqrt{} 
\phi (x1, x2) 0

 - 11
8

\sqrt{} 
\phi (x1, x2)

\surd 
255
8

\sqrt{} 
\phi (x1, x2)

\Biggr] 
,

where \bfitx = (x1, x2) and \phi (x1, x2) = 1 + 2
15 (4x

2
1  - x1x2 + x22). Our consideration

for testing the proposed method on this system of SDEs is based on the following
motivations: Since this system of SDEs has a nontrivial nonconstant diffusion term,
it is a reasonable testbed to verify the numerical performance of the proposed approach
when a neural-network training that involves solving (3.5) is required. Furthermore,
since the stationary density of this system is explicitly given by

p(x1, x2) =
2

\pi 
\surd 
15

(\phi (x1, x2))
 - 3
,(5.2)

one can validate the accuracy of the numerical estimate.

5.1.1. Data generation and implementation details. The time series dataset
\{ \bfitx i\} Ni=0 is generated by EM scheme (2.3) with \delta t= 0.05 andN = 2\times 107. The bounded
domain \Omega is set as [ - 4,4]\times [ - 6,6] such that over 98\% points are in \Omega .

In our implementation, we use 6-hidden-layer ResNets (discussed in section 3.1)
with the same width 50 per hidden layer. We employ the networks with ReLU, Mish
[46], and ReLU3 activations to learn \bfita , \bfitb \bfitb \top , and p, respectively. Notice that Mish
is C\infty smooth, so the loss (3.14) is still well defined. To learn \bfita NN and BNN, the
Adam algorithm is applied to optimize the loss (3.3) and (3.5) with batch size 10,000
for T = 20,000 iterations. We use an initial learning rate of 10 - 4. The learning rate
follows a cosine decay with the increasing training iterations; i.e., the learning rate
decays by a multiplication factor 0.5(cos(\pi tT ) + 1), where t is the current iteration.
To solve the PDE (3.7), we optimize the loss (3.10) with regularization parameters
\lambda 1 = 1, \lambda 2 = 500. We remark that, although \lambda 1 and \lambda 2 can be tuned carefully, we
only take any feasible choice because empirical experiences suggest that varying these
parameters in a moderate range only changes the result slightly. In Adam, we use the
batch size 10,000 for the first term in (3.10) and 4,000 for the boundary term, while
the second term is approximated by 3002 Gaussian quadrature points. The learning
rate is initialized at 10 - 3 and follows the cosine decay prescribed above.

5.1.2. Identification of the drift and diffusion coefficients.. To evaluate
the accuracy, we define a relative L2 error as follows:

(5.3)
\| f  - \^f\| L2(\Omega )

\| f\| L2(\Omega )
,

where f and \^f represent the true and approximate functions, respectively. Numeri-
cally, we approximate the integral over 10,000 Gaussian quadrature points in \Omega .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/0

3/
23

 to
 1

52
.3

.4
3.

64
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



64 Y. GU, J. HARLIM, S. LIANG, AND H. YANG

(a) \bfita 1 (b) (\bfita \mathrm{N}\mathrm{N})1

(c) \bfita 1-(\bfita \mathrm{N}\mathrm{N})1

Fig. 5.1. The comparison of the first component of drift term. (a) \bfita 1, (b) (\bfita NN)1, and (c)
their difference.

The relative L2 error between \bfita NN and \bfita is 5.63 \times 10 - 2. Figure 5.1 displays
the spatial profile of the first components of \bfita and \bfita NN and their difference on the
computational domain \Omega . The relative L2 error between \bfitB NN and \bfitb \bfitb \top is 3.63 \times 
10 - 2. To check the pointwise accuracy of the estimates, we plot the first diagonal
components of \bfitb \bfitb \top , \bfitB NN on the computational domain \Omega and their difference in
Figure 5.2. We can see our method works well on fitting the drift and diffusion
terms.

Given the approximate drift and diffusion coefficients, we now empirically validate
the result in Lemma 4.1 on the computational domain \Omega . Particularly, we want
to check whether the Markov chain generated by the corresponding SDE in (4.5)
(with \^\bfita = \bfita NN and \^b\^b\top = \bfitB NN) can reproduce the stationary mean and covariance
statistics of the underlying invariant measure, \pi . In Table 5.1, we listed the true
mean and covariance statistics corresponding to the underlying distribution \pi and
the approximate distribution \~\pi corresponding to discrete Markov chain generated
by EM discretization in (2.3) with the time step \delta t = 0.05 that can be empirically
estimated using the Monte Carlo average over the discrete samples. To emphasize
that these statistics are subjected to EM error, we denote \~\pi := \pi EM . Since the SDE
with coefficients \bfita NN and \bfitB NN is not analytically solvable, the statistics defined with
respect to the corresponding stationary distribution \^\pi , whose density solves (3.7),
are not computable. To validate the statistical consistency of the approximate SDE,
we compute the empirical mean and covariance by averaging over a Markov chain
corresponding to the following EM discretization:

\bfitx n+1  - \bfitx n = \bfita NN(\bfitx 
n)\delta t+\bfitU (\bfitx n)\bfitS (\bfitx n)

1
2\bfitU (\bfitx n)\top 

\surd 
\delta t\bfitxi n, \bfitxi n \sim \scrN (0,\bfitI 2),(5.4)
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STATIONARY DENSITY ESTIMATION USING DEEP LEARNING 65

(a) (\bfitb \bfitb \top )11 (b) (\bfitB \mathrm{N}\mathrm{N})11

(c) (\bfitb \bfitb \top )11  - (\bfitB \mathrm{N}\mathrm{N})11

Fig. 5.2. The comparison of first component of \bfitb \bfitb \top . (a) (\bfitb \bfitb \top )11, (b) (\bfitB NN)11, and (c) their
difference.

Table 5.1
Comparison of mean and covariance statistics corresponding to the ground truth distribution

\pi , the discrete Markov chain induced by EM scheme in (2.3), \~\pi := \pi EM , and the discrete Markov
chain generated by (5.4) for various \delta t whose invariant distribution is denoted as \^\pi EM. ``N/A""
means ``not applicable"".

Distribution \pi \~\pi := \pi \mathrm{E}\mathrm{M} \^\pi \mathrm{E}\mathrm{M}

\delta t N/A 0.05 0.05 0.01

Mean [0.000 0.000] [ - 0.002 0.000] [0.000 0.004] [ - 0.006  - 0.005]

Covariance

\biggl[ 
1.000 0.500
0.500 4.000

\biggr] \biggl[ 
1.127 0.499
0.499 4.398

\biggr] \biggl[ 
1.139 0.493
0.493 4.389

\biggr] \biggl[ 
1.012 0.493
0.493 4.061

\biggr] 

where \bfitU (\bfitx n)\bfitS (\bfitx n)\bfitU (\bfitx n)\top is the eigendecomposition of \bfitB NN(\bfitx 
n). We denote these

empirical statistics to be defined with respect to the distribution \^\pi EM that approxi-
mates \^\pi . Compared to the ground truth statistics, the statistics of \^\pi EM are subjected
to errors from the estimation of \bfita , \bfitb \bfitb \top and from the EM integration. In Table 5.1, we
note that, when \delta t = 0.05, the covariance estimate with \bfita NN,\bfitB NN is comparable to
the error of \bfita ,\bfitb \bfitb \top . When \delta t= 0.01, the covariance estimate with \bfita NN,\bfitB NN becomes
much closer to the ground truth.

5.1.3. Computation of the density function. We optimize the loss (3.10)
with \bfita NN and \bfitB NN and obtain the solution \^pNN(\cdot ;\bfittheta ). The relative L2 error between
\^pNN(\cdot ;\bfittheta ) and the true density (5.2) is 6.62 \times 10 - 2. To quantify the error induced
by the regression alone, we replace \bfita NN and \bfitB NN of \^\scrL \ast in (3.10) with the under-
lying coefficients, \bfita and \bfitb \bfitb \top , and optimize (3.10) with differential operator \scrL \ast in
the first term. We denote the corresponding solution by \~pNN(\cdot ;\bfittheta ). The relative L2

error between \~pNN(\cdot ;\bfittheta ) and the true density (5.2) is 4.21 \times 10 - 2. We can see that
\^pNN(\cdot ;\bfittheta ) achieves the error of same magnitude as \~pNN(\cdot ;\bfittheta ). Figure 5.3 shows the
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66 Y. GU, J. HARLIM, S. LIANG, AND H. YANG

(a) true density p (b) p - \~p\mathrm{N}\mathrm{N}(\cdot ;\bfittheta )

(c) p - \^p\mathrm{N}\mathrm{N}(\cdot ;\bfittheta )

Fig. 5.3. The comparison of solutions. (a) True density p, (b) difference between p and
\~pNN(\cdot ;\bfittheta ), and (c) difference between p and \^pNN(\cdot ;\bfittheta ). Here \^pNN(\cdot ;\bfittheta ) is obtained by optimizing (3.10)
with \bfita NN and \bfitB NN, while \~pNN(\cdot ;\bfittheta ) is obtained by optimizing (3.10) with \bfita and \bfitb \bfitb \top .

true density and the differences between the true density and the network solutions
\^pNN(\cdot ;\bfittheta ), \~pNN(\cdot ;\bfittheta ), plotted as functions of the computational domain \Omega . Notice
that the errors are more prominent when the coefficients \bfita and \bfitb are estimated, as
expected.

We remark that the obtained O(10 - 2) accuracy of this method is acceptable
compared with other recent works using NNs to solve PDEs. Recent empirical results
in solving deterministic PDEs using deep learning methods reported relative \ell 2 errors
between O(10 - 4) and O(10 - 2) (e.g., [17, 53, 70, 71]). In comparison, we solve the
FP equation whose drift and diffusion terms are estimated from randomly generated
data, which is more difficult than the purely deterministic problems.

5.2. The Langevin dynamics. We consider a molecular model describing the
dynamics of M atoms with mass 1. We assume the M particles are spaced in a
chain with a periodic boundary condition. Let the equilibrium distance between two
neighboring particles be a0; then the equilibrium position of the mth particle is ma0.
Denote rm as the displacement of the mth particle from its equilibrium position,
and denote vm as its velocity. The Langevin dynamics of this model is described as
follows:

\.\bfitv = - \nabla \bfitr U(\bfitr ) - \gamma \bfitv +
\sqrt{} 
2kBT\gamma \.\bfitW t,

\.\bfitr = \bfitv ,
(5.5)

where \bfitv = [v1, . . . , vM ]\top and \bfitr = [r1, . . . , rM ]\top are the velocities and displacement of

all particles; \bfitW t = [W
(1)
t , . . . ,W

(M)
t ]\top is anM -dimensional Wiener process; U is some
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STATIONARY DENSITY ESTIMATION USING DEEP LEARNING 67

potential function; \gamma is the friction constant; kBT is the temperature. The mass of
particles is set to be unity in (5.5). The equilibrium distribution of (5.5) is given by

(5.6) p(\bfitv ,\bfitr )\propto exp

\biggl[ 
 - 1

kBT

\biggl( 
U(\bfitr ) +

1

2
| \bfitv | 2

\biggr) \biggr] 
.

In the numerical simulation, we take the Lennard--Jones potential [27], which is
given by

(5.7) U(\bfitr ) =

M\sum 
i=1

i - 1\sum 
j=i - 2

\psi (ri  - rj + (i - j)a0), r0 := rM , r - 1 := rM - 1

with

(5.8) \psi (r) = | r|  - 12  - | r|  - 6.

The model parameters of this example are set to be a0 = 1, \gamma = 0.5, kBT = 0.25,
M = 10.

5.2.1. Data generation. We generate the data by EM discretization, namely,

\bfitv n+1 = \bfitv n  - (\nabla \bfitr nU(\bfitr n) + \gamma \bfitv n)\delta t+
\sqrt{} 
2kBT\gamma \delta t\bfitxi , \bfitxi \sim (\scrN (0,1))

M
,

\bfitr n+1 = \bfitr n + \bfitv n\delta t
(5.9)

for n= 0,1, . . . ,N  - 1 with the initial states

\bfitv 0 = 0, \bfitr 0 \sim (\scrN (0,0.01))
M
.

In this example, we set \delta t = 0.0005 and N = 107. Following the notation in
section 3.2, we denote \scrX := \{ \bfitv n,\bfitr n\} Nn=0 as the original dataset. If we visualize the
distribution of \scrX by projecting it onto the (r1, r2)-plane (Figure 5.4), it is observed
that displacement components are distributed near a straight line. To simplify the
computation and visualization, we consider a coordinate transformation that maps \scrX 
to a distribution that can be enclosed by a hyperrectangle. Specifically, we introduce
the following coordinate transformation:

\scrT :\BbbR M \rightarrow \BbbR M - 1, \bfitd := [d1, . . . , dM - 1]
\top = \scrT (\bfitr ) = [r2  - r1, . . . , rM  - rM - 1]

\top 
,

-30 -20 -10 0 10 20

-30

-20

-10

0

10

20

(a) distribution of (r1, r2)

-0.2 -0.1 0 0.1 0.2 0.3

-0.2

-0.1

0

0.1

0.2

0.3

(b) distribution of (d1, d2)

Fig. 5.4. The distribution of the original dataset \scrX in the (r1, r2)-plane and the distribution

of the transformed dataset \^\scrX in the (d1, d2)-plane.
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68 Y. GU, J. HARLIM, S. LIANG, AND H. YANG

Table 5.2
Comparison of mean and covariance statistics (\bfitv 1 and \bfitd 1) corresponding to the ground truth

distribution \pi , the discrete Markov chain induced by EM scheme in (2.3), \~\pi , and the discrete Markov
chain generated by (5.10) for \delta t = 0.0005 whose invariant distribution is denoted as \^\pi EM. ``N/A""
means ``not applicable"".

Distribution \pi \~\pi \^\pi \mathrm{E}\mathrm{M}

\delta t N/A 0.0005 0.0005

Mean [0 0] [ - 0.00363  - 0.00013] [ - 0.00153  - 0.00003]

Covariance

\biggl[ 
0.40229  - 0.01749
 - 0.01749 0.00245

\biggr] \biggl[ 
0.37816 0.00008
0.00008 0.00292

\biggr] \biggl[ 
0.40916 0.00041
0.00041 0.00314

\biggr] 

where \bfitd is called the relative displacement. Note that the map \scrT implies r1  - rM =
 - 
\sum M - 1

m=1 dm. If we define the transformed dateset \^\scrX := \{ \bfitv n,\bfitd n\} Nn=0 with \bfitd n =
\scrT (\bfitr n) and project it onto the (d1, d2)-plane (Figure 5.4), then it is observed that
most points in \^\scrX are located near the origin and form a circular region. Conse-
quently, we apply the proposed method to the transformed dataset \^\scrX in the practical
computation.

5.2.2. Identification of the drift and diffusion coefficients. Now we aim
to identify the drift term \bfita (\bfitv ,\bfitr ) and the diffusion \bfitb \bfitb \top of the underlying dynamics.
Due to the transformation \scrT , we define \^\bfita (\bfitv ,\bfitd ) := \bfita (\bfitv ,\bfitr ) and aim to identify \^\bfita by
the optimization (3.3) using the dataset \^\scrX . Note \^\bfita (\bfitv ,\bfitd ) is a vector-valued function
with (2M  - 1)-dimensional inputs and 2M -dimensional outputs. In this example, to
obtain higher accuracy, we use an individual neural network with (2M - 1)-dimensional
inputs and scalar outputs to approximate the each component of \^\bfita (\bfitv ,\bfitd ), solving the
regression problem in (3.3). In this application, this is a regression over training

dataset ( \^\scrX ,\scrY ), where \scrY := \{ \bfitv n+1 - \bfitv n

\delta t , \bfitr 
n+1 - \bfitr n

\delta t \} N - 1
n=0

In practice, we set each component of \^\bfita NN to be a fully connected ReLU network
with 3 layers and 100 neurons in each layer. We employ the Adam optimizer with 1000
epochs, and the learning rates are set to decay from 10 - 3 to 10 - 5. The relative \ell 2

training errors for the first M components corresponding to the velocity are observed
to be between 3.87\times 10 - 2 and 5.60\times 10 - 2, and the errors for the nextM components
are between 5.04\times 10 - 5 and 8.99\times 10 - 5.

Next, we consider the approximation \bfitB NN to the constant matrix \bfitb \bfitb \top using the
formula in (3.6). In this example, since \bfitb \bfitb \top is a diagonal matrix, we also set \bfitB NN

to be diagonal with components (b11, . . . , b2M,2M ). The errors | bkk  - (\bfitb \bfitb \top )kk| for the
first M components are observed to be between 6.32\times 10 - 6 and 2.67\times 10 - 6, and the
errors for the next M components are between 8.07\times 10 - 13 and 3.63\times 10 - 12.

Similar to the previous example, we simulate the Markov chain of the estimated
\^\bfita NN and \bfitB NN,

\bfitv n+1  - \bfitv n = (\^\bfita NN)1:M (\bfitv n,\bfitd n)\delta t+ (\bfitB NN)
1
2

\surd 
\delta t\bfitxi n, \bfitxi n \sim \scrN (0,\bfitI M ),(5.10)

\bfitr n+1  - \bfitr n = (\^\bfita NN)M+1:2M (\bfitv n,\bfitd n)\delta t,

and compare its statistics with those of the ground truth. For the covariance of \pi ,
Monte Carlo integration with 108 points is used. For the statistics of \~\pi and \^\pi EM,
we generate a sequence of 107 points. The information is shown in Table 5.2 for the
components \bfitv 1 and \bfitd 1. Notice that, in this case, the statistical error for estimating
\^\pi EM is not much worse than the Monte Carlo error of \~\pi .

5.2.3. Computation of the density function. In this section, we aim to
recover the equilibrium density function based on the obtained \{ \^aNN(\bfitv ,\bfitd ;\bfittheta k)\} and
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STATIONARY DENSITY ESTIMATION USING DEEP LEARNING 69

\bfitB NN. We let p(\bfitv ,\bfitr ) be the original density function in (\bfitv ,\bfitr )-coordinates and define
\^p(\bfitv ,\bfitd ) := p(\bfitv ,\bfitr ) to be the density function under transformation \scrT . Since p(\bfitv ,\bfitr )
satisfies (3.8), we can derive the PDE for \^p(\bfitv ,\bfitd ), which is given by

 - 
M\sum 
k=1

\partial 

\partial vk
(\^p\^ak) - 

2M - 1\sum 
k=M+1

\partial 

\partial dk - M
(\^p(\^ak+1  - \^ak))(5.11)

+
1

2

M\sum 
k=1

(\bfitb \bfitb \top )kk
\partial 2

\partial v2k
\^p+

1

2
(\bfitb \bfitb \top )M+1,M+1

\partial 2

\partial d21
\^p

+
1

2

M - 1\sum 
k=2

(\bfitb \bfitb \top )k+M,k+M

\biggl( 
\partial 

\partial dk
 - \partial 

\partial dk - 1

\biggr) 2

\^p+
1

2
(\bfitb \bfitb \top )2M,2M

\partial 2

\partial d2M - 1

\^p= 0,

where \^ak denotes the kth component of \^\bfita .
Once the drift and diffusion coefficients are estimated, we substitute \^ak with the

kth FNN estimate, denoted as \^aNN(\bfitv ,\bfitd ;\bfittheta k), and (\bfitb \bfitb \top )k,k with the diagonal compo-
nents of the estimated diffusion matrix, bkk := (\bfitB NN)kk, such that (5.11) becomes

 - 
M\sum 
k=1

\partial 

\partial vk
(\^p\^aNN(\bfitv ,\bfitd ;\bfittheta k)) - 

2M - 1\sum 
k=M+1

\partial 

\partial dk - M
(\^p(\^aNN(\bfitv ,\bfitd ;\bfittheta k+1) - \^aNN(\bfitv ,\bfitd ;\bfittheta k)))

(5.12)

+
1

2

\Biggl( 
M\sum 
k=1

bkk
\partial 2\^p

\partial v2k
+ bM+1,M+1

\partial 2\^p

\partial d21

+

M - 1\sum 
k=2

bk+M,k+M

\biggl( 
\partial 

\partial dk
 - \partial 

\partial dk - 1

\biggr) 2

\^p+ b2M,2M
\partial 2\^p

\partial d2M - 1

\Biggr) 
= 0.

Next, we select a bounded domain in which the PDE (5.12) will be solved. Our

choice is to use a hyperrectangle \Omega =
2M - 1\prod 
k=1

[ck  - sk, ck + sk] to enclose most of the

points in \^\scrX . At the same time, we expect \Omega to also be densely covered by the points
in \^\scrX . By this principle, we set ck as the componentwise mean of the points in \^\scrX ,
namely,

(5.13) ck =

\Biggl\{ 
1
N

\sum N
n=1 vk for k= 1, . . . ,M,

1
N

\sum N
n=1 dk for k=M + 1, . . . ,2M  - 1,

and set sk empirically as follows:

(5.14) sk =

\Biggl\{ 
1.0 for k= 1, . . . ,M,

0.1 for k=M + 1, . . . ,2M  - 1.

For clarity, we display the projections of \^\scrX and \Omega onto coordinate planes in Figure 5.5.
We take a neural network \^pNN(\bfitv ,\bfitd ;\bfittheta ) to approximate \^p(\bfitv ,\bfitd ). Then we solve

the PDE (5.12) with the least squares method introduced in section 3.3 to deter-
mine \^pNN(\bfitv ,\bfitd ;\bfittheta ). Specifically, we solve the least squares problem in (3.14) with
\lambda 1 = 1 and \lambda 2 = 0, ignoring the artificial boundary constraint since the function
values at the boundary \partial \Omega are small: they range from 7\times 10 - 7 to 4\times 10 - 6. Mean-
while, 90\% of the points in \^\scrX \cap \Omega are selected as the training set, denoted as \^DT,
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Fig. 5.5. The projections of the dataset \scrX (blue points) and the enclosing region \Omega (red boxes)
onto (v1, v2)-, (v3, v3)-, (d1, d2)-, (d3, d4)-planes.
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STATIONARY DENSITY ESTIMATION USING DEEP LEARNING 71

and the other 10\% are chosen as the testing set, denoted as \^DS, for the evalua-
tion of the solution error. In practice. we set \^pNN to be a fully connected net-
work having 3 layers and 100 neurons in each layer with ReLU3 activation. The
Adam optimizer is used to solve the optimization with 1,000 epochs, and the learning
rates are set to decay from 10 - 4 to 10 - 5. Once \^pNN is obtained from the mini-
mization of (3.14), the integral

\int 
\BbbR 2M - 1 \^pNN may not be quite close to 1, so we next

perform an additional normalization to the estimated \^pNN. Specifically, we approx-
imate I =

\int 
\BbbR 2M - 1 \^pNN by a Monte Carlo integration with a vast number of sample

points. We repeat doubling the sample points to refine the numerical integral until
it converges with stopping threshold 10 - 6, i.e., | I(N) - I(N/2)| \leq 10 - 6, where I(N)
denotes the numerical integral with N sample points. Then \^pNN is normalized by the
estimated I.

Next, we evaluate the result by computing the error between \^pNN(\bfitv ,\bfitd ) and the
true density function \^p(\bfitv ,\bfitd ). From (5.6), we directly have the expression of \^p(\bfitv ,\bfitd ),
namely,

(5.15) \^p(\bfitv ,\bfitd ) = c \cdot exp
\biggl[ 
 - 1

kBT

\biggl( 
\^U(\bfitd ) +

1

2
| \bfitv | 2

\biggr) \biggr] 
with

\^U(\bfitd ) =\psi 

\Biggl( 
 - 

M - 1\sum 
i=1

di + a0

\Biggr) 
+\psi 

\Biggl( 
 - 

M - 2\sum 
i=1

di + 2a0

\Biggr) 
+\psi (d1 + a0) +\psi 

\Biggl( 
 - 

M - 1\sum 
i=2

di + 2a0

\Biggr) (5.16)

+

M\sum 
i=3

\psi (di - 1 + a0) +

M\sum 
i=3

\psi (di - 1 + di - 2 + 2a0),

where c is a normalization constant such that

(5.17)

\int 
\BbbR 2M - 1

\^p(\bfitv ,\bfitd ) = 1.

Therefore c can be computed as

(5.18) c=

\biggl( \int 
\BbbR 2M - 1

exp

\biggl[ 
 - 1

kBT

\biggl( 
\^U(\bfitd ) +

1

2
| \bfitv | 2

\biggr) \biggr] \biggr)  - 1

.

Since there is no closed form for the integral in (5.18), we approximate c numerically
by the Monte Carlo method.

Subsequently, the relative \ell 2 error between \^pNN(\bfitv ,\bfitd ) and \^p(\bfitv ,\bfitd ) is computed
according to (5.3) with L2(\Omega ) replaced by L2( \^DS), where the integral is replaced by
an average over the testing dataset \^DS . In this numerical result, we found that the
relative \ell 2 error of the computed density function \^pNN is 5.402\times 10 - 2. In Figure 5.6,
we also show the marginal densities of \^pNN

\^pmarginal
NN,k (vk) :=

\int 
(\bfitv ,\bfitd )\setminus vk\in \BbbR 2M - 2

\^pNN(\bfitv ,\bfitd ;\bfittheta ) for k= 1, . . . ,M,

\^pmarginal
NN,k (dk) :=

\int 
(\bfitv ,\bfitd )\setminus dk\in \BbbR 2M - 2

\^pNN(\bfitv ,\bfitd ;\bfittheta ) for k=M + 1, . . . ,2M  - 1

(5.19)
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Fig. 5.6. Marginal densities of the computed density function \^pNN (red curves) and the true
density function \^p (blue curves) for all components.

compared with the following true marginal densities:

\^pmarginal
k (vk) :=

\int 
(\bfitv ,\bfitd )\setminus vk\in \BbbR 2M - 2

\^p(\bfitv ,\bfitd ) for k= 1, . . . ,M,

\^pmarginal
k (dk) :=

\int 
(\bfitv ,\bfitd )\setminus dk\in \BbbR 2M - 2

\^p(\bfitv ,\bfitd ) for k=M + 1, . . . ,2M  - 1,

(5.20)

where the integrals in (5.17), (5.19), and (5.20) are computed by the Monte Carlo
method. Notice the accurate estimation of the marginal densities of the velocity
components that are Gaussian and the marginal densities of the relative displacement
components that are nonsymmetric.

6. Conclusion. In this paper, we developed a deep learning--based method to
estimate the stationary density of an unknown It\^o diffusion SDE from a time series
induced by the EM solver. Neural networks are employed to approximate the drift,
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STATIONARY DENSITY ESTIMATION USING DEEP LEARNING 73

diffusion, and stationary density of the underlying dynamics. In our method, the first
step is learning the drift and diffusion coefficients by solving least squares regressions
corresponding to the available dataset, and the second step is solving the steady-state
FP equation formed by the estimated drift and diffusion coefficients. Theoretically,
we deduced an error bound for the proposed approach for an SDE with global Lip-
schitz drift coefficients and a constant diffusion matrix, accounting errors from the
discretization of the SDE in the training data, the regression of the drift terms using
fully connected ReLU networks with arbitrary width and layers, and the regression
solution to the FP PDE using a fully connected two-layer neural network with the
ReLU3 activation function. This error bound is deduced under various assumptions
that underpin the perturbation theory result in [74], generalization errors in approx-
imating Lipschitz continuous functions in [29], and in solving PDEs in [42].

From this theoretical study, we observe two difficult aspects that warrant careful
treatment in future studies. The first issue concerns the incompatibility of the topolo-
gies that characterize the perturbation theory and machine learning generalization
theory. Since the bound in (4.6) is stronger than an L2 error bound in generalization
theory, one requires a tacit assumption of consistency in the sense of (4.4), which is
not easily verified in practice. The second issue concerns the incompatibility of the
computational and physical domains, which is admitted under Assumption 4.2. Par-
ticularly, while the underlying stochastic process is defined on \BbbR d, the error estimation
that accounts for finite samples and the training for \bfita and \^p is not easily guaranteed
for the entire unbounded domain. Besides, it is also only feasible to employ the com-
putation over a bounded domain. Finally, recall that, in the analysis of regression
error for the drift estimator \bfita , we derived an error estimate for deep networks of any
width and depth. On the other hand, in the error analysis for the FP solution \^p,
only results with two-layer shallow networks were derived in the current work. It is
promising to extend this result to deep networks in future work.

Numerically, we verified the effectiveness of the proposed method on two ex-
amples: a two-dimensional Student t-distribution and the 20-dimensional Langevin
dynamics. Although the proposed data-driven methods show encouraging numerical
results on the approximation of the invariant statistics and densities, the empirical
loss function in (3.14) requires samples \bfitx n

I ,\bfitx 
n
II , and \bfitx n

III . Such a requirement may
not be viable when the geometry is more complicated than hypercubes. While sam-
pling the first term in (3.14) is avoidable by a Monte Carlo over the available time
series, as we have done in our numerical examples, generating samples for the sec-
ond and third terms in the loss function in (3.14) is unavoidable. In the future, we
plan to consider different penalties such as the one proposed in [72] which requires no
additional samples other than the available time series.

Appendix A. Proofs for section 4.

Proof of Lemma 4.5. Since f0 \in \scrB ReLU, by [67, Theorem 12], there exists a
two-layer ReLU FNN f\ast with width W such that \| f\ast \| L\infty ([0,1]d) \leq \| f0\| \scrB \mathrm{R}\mathrm{e}\mathrm{L}\mathrm{U}

and

\| f\ast  - f0\| L\infty ([0,1]d) \leq 4\| f0\| \scrB \mathrm{R}\mathrm{e}\mathrm{L}\mathrm{U}
(d+ 1)

1
2W - 1

2 \leq 4
\surd 
2\| f0\| \scrB \mathrm{R}\mathrm{e}\mathrm{L}\mathrm{U}d

1
2W - 1

2 .

So f\ast \in \scrF P
2,W,ReLU. Since \nu is absolutely continuous with respect to the Lebesgue

measure, it follows that

\| f\ast  - f0\| 2L2
\nu ([0,1]

d) \leq 32\| f0\| 2\scrB \mathrm{R}\mathrm{e}\mathrm{L}\mathrm{U}
dW - 1.(A.1)
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Also, [29, Lemma 3.2] implies that

\BbbE \nu 

\Bigl[ 
| fNN(\cdot ,\bfittheta f0) - f0| 2

\Bigr] (A.2)

\leq C

\Biggl[ 
P 2W (d+W ) log(Wd+W 2)(logN)3N - 1 + inf

f\in \scrF P
2,W,\mathrm{R}\mathrm{e}\mathrm{L}\mathrm{U}

\BbbE \nu 

\bigl[ 
| f  - f0| 2

\bigr] \Biggr] 
,

where C is a constant that does not depend on d, N , W , f0, P . Combining (A.1) and
(A.2) completes the proof.

Proof of Lemma 4.7. Denote \^e := q  - \^p. On the one hand, using integration by
parts, \int 

\Omega 

\^\scrL \ast \^e \cdot \^ed\bfitx \geq 
\int 
\Omega 

d\sum 
i,j=1

1

2
Bij

NN\^exi
\^exj

d\bfitx  - 
\int 
\partial \Omega 

\left(  d\sum 
i,j=1

1

2
Bij

NN| \^exi
| \cdot | nj | 

\right)  | \^e| ds(A.3)

+

\int 
\Omega 

d\sum 
i=1

aiNN\^exi \cdot \^e+

\Biggl( 
d\sum 

i=1

\partial aiNN

\partial xi

\Biggr) 
\^e2d\bfitx 

\geq 1

2
\Lambda 

\int 
\Omega 

\| \nabla \^e\| 2dx - 1

2
dB1

\int 
\partial \Omega 

\| \nabla \^e\| \cdot | \^e| ds

\geq 1

2
\Lambda \| \nabla \^e\| 2L2(\Omega )  - 

1

2
dB1

\bigl( 
\| \nabla q\| L2(\partial \Omega ) + \| \nabla \^p\| L2(\partial \Omega )

\bigr) 
\| \^e\| L2(\partial \Omega )

\geq 1

2
\Lambda \| \nabla \^e\| 2L2(\Omega )  - 

1

2
dB1 (B2 + \epsilon \^p)\| \^e\| L2(\partial \Omega ),

where nj is the jth component of the outward unit normal vector.
On the other hand,

(A.4)

\int 
\Omega 

\^\scrL \ast \^e \cdot \^edx=
\int 
\Omega 

\^\scrL \ast q \cdot \^edx\leq \| \^\scrL \ast q\| L2(\Omega ) \cdot \| \^e\| L2(\Omega ).

Combining (A.3) and (A.4) leads to

(A.5) \| \nabla \^e\| 2L2(\Omega ) \leq 2\Lambda  - 1\| \^\scrL \ast q\| L2(\Omega ) \cdot \| \^e\| L2(\Omega ) +\Lambda  - 1dB1(B2 + \epsilon \^p)\| \^e\| L2(\partial \Omega ).

Next, by Poincar\'e inequality, there exist some C1 > 0 that only depend on \Omega such
that \bigm\| \bigm\| \bigm\| \bigm\| \^e - | \Omega |  - 1

\int 
\Omega 

\^edx

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\Omega )

\leq C1\| \nabla \^e\| L2(\Omega ),

which leads to

\| \^e\| L2(\Omega ) \leq | \Omega |  - 1

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\^edx

\bigm| \bigm| \bigm| \bigm| \| 1\| L2(\Omega ) +C1\| \nabla \^e\| L2(\Omega ) \leq C2

\biggl( \bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\^edx

\bigm| \bigm| \bigm| \bigm| + \| \nabla \^e\| L2(\Omega )

\biggr) 
,

where C2 =max(C1, | \Omega |  - 1/2). Therefore, by (A.5) and the fact
\int 
\Omega 
\^pd\bfitx = 1,

\| \^e\| 2L2(\Omega ) \leq C3

\Biggl[ \bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\^ed\bfitx 

\bigm| \bigm| \bigm| \bigm| 2 + \| \nabla \^e\| 2L2(\Omega )

\Biggr] 

\leq C3

\Biggl[ \bigm| \bigm| \bigm| \bigm| \int 
\Omega 

qdx - 1

\bigm| \bigm| \bigm| \bigm| 2 + 2\Lambda  - 1\| \^\scrL \ast q\| L2(\Omega ) \cdot \| \^e\| L2(\Omega ) +\Lambda  - 1dB1(B2 + \epsilon \^p)\| \^e\| L2(\partial \Omega )

\Biggr] 
,

(A.6)
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STATIONARY DENSITY ESTIMATION USING DEEP LEARNING 75

where C3 = 2C2
2 . Using the Young inequality 2C3\Lambda 

 - 1\| \^\scrL \ast q\| L2(\Omega ) \cdot \| \^e\| L2(\Omega ) \leq 
4C2

3\Lambda 
 - 2\| \^\scrL \ast q\| 2

L2(\Omega )
+\| \^e\| 2

L2(\Omega )

2 , it follows from (A.6) that
(A.7)
1

2
\| \^e\| 2L2(\Omega ) \leq C3

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

qdx - 1

\bigm| \bigm| \bigm| \bigm| 2 + 2C2
3\Lambda 

 - 2\| \^\scrL \ast q\| 2L2(\Omega ) +C3\Lambda 
 - 1dB1(B2 + \epsilon \^p)\| \^e\| L2(\partial \Omega ).

Note \| \^e\| L2(\partial \Omega ) \leq \| \^p\| L2(\partial \Omega ) + \| q\| L2(\partial \Omega ) \leq \epsilon \^p + \| q\| L2(\partial \Omega ); it follows from (A.7)
that

\| \^e\| 2L2(\Omega ) \leq 2C3

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

qdx - 1

\bigm| \bigm| \bigm| \bigm| 2 + 4C2
3\Lambda 

 - 2\| \^\scrL \ast q\| 2L2(\Omega ) + 2C3\Lambda 
 - 1dB1(B2 + \epsilon \^p)\epsilon \^p

+2C3\Lambda 
 - 1dB1(B2 + \epsilon \^p)\| q\| L2(\partial \Omega )

\leq C
\Bigl( 
J [q] + d(B2 + \epsilon \^p)J [q]

1
2 + d(B2 + \epsilon \^p)\epsilon \^p

\Bigr) 
,

where C only depends on \Omega ,\Lambda ,B1, \lambda 1, \lambda 2.

Proof of Lemma 4.8. Let f = \BbbE (c,\bfitw )\sim \rho [c \.\sigma (\bfitw 
\top \bfitx )] for some \rho taking the infimum

in (4.21). Then \^\scrL \ast f =\BbbE (c,\bfitw )\sim \rho [ \^\scrL \ast (c \.\sigma (\bfitw \top \bfitx ))]. Using the homogeneity of the neuron
c \.\sigma (\bfitw \top \bfitx ), we may assume that \| \bfitw \| 1 = 1 and | c| = \| f\| \scrB \.\sigma \rho -almost everywhere.
Indeed, denote p0 as the density of \rho ; we define the probability measure \rho \ast with the
density

p\ast 0(\^c, \^\bfitw ) =

\Biggl\{ \int 
c\| \bfitw \| 3

1=\^c
p0(c,\bfitw )dcd\bfitw if \| \^\bfitw \| 1 = 1,

0, otherwise;
(A.8)

then it can be verified that \rho \ast \in Pf , \BbbE \rho | c| \| \bfitw \| 31 = \BbbE \rho \ast | \^c| \| \^\bfitw \| 31, and supp(p\ast 0) \subset \BbbR \times 
\{ \| \^\bfitw \| 1 = 1\} . Moreover, we define the probability measure \rho \ast \ast with the density

p\ast \ast 0 (\~c, \~\bfitw ) =

\left\{     
\| f\|  - 1

\scrB \.\sigma 

\int +\infty 
0

| \^c| p\ast 0(\^c, \^\bfitw )d\^c if \~c= \| f\| \scrB \.\sigma 
,\| \~\bfitw \| 1 = 1,

\| f\|  - 1
\scrB \.\sigma 

\int 0

 - \infty | \^c| p\ast 0(\^c, \^\bfitw )d\^c if \~c= - \| f\| \scrB \.\sigma ,\| \~\bfitw \| 1 = 1,

0, otherwise;

(A.9)

then it can be verified that \rho \ast \ast \in Pf , \BbbE \rho \ast | \^c| \| \^\bfitw \| 31 =\BbbE \rho \ast \ast | \~c| \| \~\bfitw \| 31, and supp(p\ast \ast 0 )\subset \{ \~c=
\pm \| f\| \scrB \.\sigma 

\} \times \{ \| \~\bfitw \| 1 = 1\} .
Let \{ (cm,\bfitw m)\} be M i.i.d. samples with \rho . By [58, Lemma 26.2],

\BbbE \{ (cm,\bfitw m)\} \sim \rho M

\Biggl[ 
sup
\bfitx \in \Omega 

\^\scrL \ast 

\Biggl( 
1

M

M\sum 
m=1

cm \.\sigma (\bfitw \top 
m\bfitx )

\Biggr) 
 - \^\scrL \ast f(\bfitx )

\Biggr] (A.10)

=\BbbE \{ (cm,\bfitw m)\} \sim \rho M

\Biggl[ 
sup
\bfitx \in \Omega 

\Biggl( 
1

M

M\sum 
m=1

\^\scrL \ast cm \.\sigma (\bfitw \top 
m\bfitx ) - \BbbE (c,\bfitw )\sim \rho [ \^\scrL \ast (c \.\sigma (\bfitw \top \bfitx ))]

\Biggr) \Biggr] 

\leq 2\BbbE \{ (cm,\bfitw m)\} \sim \rho M\BbbE \tau 

\Biggl[ 
sup
\bfitx \in \Omega 

1

M

M\sum 
m=1

\tau m \^\scrL \ast (cm \.\sigma (\bfitw \top 
m\bfitx ))

\Biggr] 
,

where \tau m =\pm 1 with probability 1/2 are independent Rademacher variables.
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Note that

\BbbE \tau 

\Biggl[ 
sup
\bfitx \in \Omega 

1

M

M\sum 
m=1

\tau m \^\scrL \ast (cm \.\sigma (\bfitw \top 
m\bfitx ))

\Biggr] 
(A.11)

=\BbbE \tau 

\Biggl[ 
sup
\bfitx \in \Omega 

1

M

M\sum 
m=1

\tau mcm

\biggl( 
1

2
\bfitw \top 

m\bfitB NN\bfitw m \.\sigma \prime \prime (\bfitw \top 
m\bfitx )

+\bfita \top 
NN\bfitw m \.\sigma \prime (\bfitw \top 

m\bfitx ) +

\Biggl( 
d\sum 

i=1

\partial aiNN

\partial xi

\Biggr) 
\.\sigma (\bfitw \top 

m\bfitx )

\Biggr) \Biggr] 

\leq \BbbE \tau 

\Biggl[ 
sup
\bfitx \in \Omega 

1

M

M\sum 
m=1

1

2
\tau mcm\bfitw \top 

m\bfitB NN\bfitw m \.\sigma \prime \prime (\bfitw \top 
m\bfitx )

\Biggr] 

+\BbbE \tau 

\Biggl[ 
sup
\bfitx \in \Omega 

1

M

M\sum 
m=1

\tau mcm\bfita \top 
NN\bfitw m \.\sigma \prime (\bfitw \top 

m\bfitx )

\Biggr] 

+\BbbE \tau 

\Biggl[ 
sup
\bfitx \in \Omega 

1

M

M\sum 
m=1

\tau mcm

\Biggl( 
d\sum 

i=1

\partial aiNN

\partial xi

\Biggr) 
\.\sigma (\bfitw \top 

m\bfitx )

\Biggr] 
.

For the first term in (A.11), by the contraction lemma for Rademacher complex-
ities [58, Lemma 26.9], we have

\BbbE \tau 

\Biggl[ 
sup
\bfitx \in \Omega 

1

M

M\sum 
m=1

1

2
\tau mcm\bfitw \top 

m\bfitB NN\bfitw m \.\sigma \prime \prime (\bfitw \top 
m\bfitx )

\Biggr] 
(A.12)

=\BbbE \tau 

\Biggl[ 
sup
\bfitx \in \Omega 

1

M

M\sum 
m=1

\tau m \.\sigma \prime \prime 
\biggl( 
1

2
cm\bfitw \top 

m\bfitB NN\bfitw m \cdot \bfitw \top 
m\bfitx 

\biggr) \Biggr] 

\leq \BbbE \tau 

\Biggl[ 
sup
\bfitx \in \Omega 

1

M

M\sum 
m=1

\tau mB1| cm| \| \bfitw m\| 21 \cdot \bfitw \top 
m\bfitx 

\Biggr] 

=
B1

M
\BbbE \tau 

\Biggl[ 
sup
\bfitx \in \Omega 

\bfitx \top 
M\sum 

m=1

\tau m| cm| \| \bfitw m\| 21 \cdot \bfitw m

\Biggr] 

\leq B1\BbbE \tau 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

M

M\sum 
m=1

\tau m| cm| \| \bfitw m\| 21 \cdot \bfitw m

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
1

.

Similarly, we can derive

\BbbE \tau 

\Biggl[ 
sup
\bfitx \in \Omega 

1

M

M\sum 
m=1

\tau mcm\bfita \top 
NN\bfitw m \.\sigma \prime (\bfitw \top 

m\bfitx )

\Biggr] 
\leq B1\BbbE \tau 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

2M

M\sum 
m=1

\tau m| cm| \| \bfitw m\| 1 \cdot \bfitw m

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
1

(A.13)

and

\BbbE \tau 

\Biggl[ 
sup
\bfitx \in \Omega 

1

M

M\sum 
m=1

\tau mcm

\Biggl( 
d\sum 

i=1

\partial aiNN

\partial xi

\Biggr) 
\.\sigma (\bfitw \top 

m\bfitx )

\Biggr] 
\leq B1\BbbE \tau 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

2M

M\sum 
m=1

\tau m| cm| \bfitw m

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
1

.

(A.14)
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Denote \bfitu m := cm\bfitw m; then \| \bfitu m\| 1 = \| f\| \scrB \.\sigma . We combine (A.10)--(A.14) and obtain

\BbbE \{ (cm,\bfitw m)\} \sim \rho M

\Biggl[ 
sup
\bfitx \in \Omega 

\^\scrL 

\Biggl( 
1

M

M\sum 
m=1

cm \.\sigma (\bfitw \top 
m\bfitx )

\Biggr) 
 - \^\scrL f(\bfitx )

\Biggr] 
(A.15)

\leq 2 sup
\| \bfitu m\| 1\leq \| f\| \scrB \.\sigma 

2B1\BbbE \tau \| 
1

M

M\sum 
m=1

\tau m\bfitu m\| 1

\leq 2\| f\| \scrB \.\sigma 
sup

\| \bfitu m\| 1\leq 1

2B1\BbbE \tau \| 
1

M

M\sum 
m=1

\tau m\bfitu m\| 1

\leq 2
\surd 
d\| f\| \scrB \.\sigma 

sup
\| \bfitu m\| 2\leq 1

2B1\BbbE \tau \| 
1

M

M\sum 
m=1

\tau m\bfitu m\| 2

\leq 4B1\| f\| \scrB \.\sigma 

\sqrt{} 
d/M

by using the Rademacher complexity of the unit ball [58, Lemma 26.10]. Applying
the same argument to  - ( \^\scrL ( 1

M

\sum M
m=1 cm \.\sigma (\bfitw \top 

m\bfitx )) - \^\scrL f(\bfitx )) leads to

\BbbE \{ (cm,\bfitw m)\} \sim \rho M

\Biggl[ 
sup
\bfitx \in \Omega 

\bigm| \bigm| \bigm| \bigm| \bigm| \^\scrL 
\Biggl( 

1

M

M\sum 
m=1

cm \.\sigma (\bfitw \top 
m\bfitx )

\Biggr) 
 - \^\scrL f(\bfitx )

\bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggr] 
\leq 4B1\| f\| \scrB \.\sigma 

\sqrt{} 
d/M.

(A.16)

By a similar argument, we can derive

\BbbE (c,\bfitw )\sim \rho 

\Biggl[ 
sup
\bfitx \in \Omega 

\bigm| \bigm| \bigm| \bigm| \bigm| 1M
M\sum 

m=1

cm \.\sigma (\bfitw \top 
m\bfitx ) - f(\bfitx )

\bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggr] 
,(A.17)

\BbbE (c,\bfitw )\sim \rho 

\Biggl[ 
sup
\bfitx \in \partial \Omega 

\bigm| \bigm| \bigm| \bigm| \bigm| 1M
M\sum 

m=1

cm \.\sigma (\bfitw \top 
m\bfitx ) - f(\bfitx )

\bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggr] 
\leq \| f\| \scrB \.\sigma 

\sqrt{} 
d/M.

Therefore we have

\BbbE (c,\bfitw )\sim \rho M

\Biggl[ 
sup
\bfitx \in \Omega 

\bigm| \bigm| \bigm| \bigm| \bigm| \^\scrL 
\Biggl( 

1

M

M\sum 
m=1

cm \.\sigma (\bfitw \top 
m\bfitx )

\Biggr) 
 - \^\scrL f(\bfitx )

\bigm| \bigm| \bigm| \bigm| \bigm| +sup
\bfitx \in \Omega 

\bigm| \bigm| \bigm| \bigm| \bigm| 1M
M\sum 

m=1

cm \.\sigma (\bfitw \top 
m\bfitx ) - f(\bfitx )

\bigm| \bigm| \bigm| \bigm| \bigm| 
(A.18)

+ sup
\bfitx \in \partial \Omega 

\bigm| \bigm| \bigm| \bigm| \bigm| 1M
M\sum 

m=1

cm \.\sigma (\bfitw \top 
m\bfitx ) - f(\bfitx )

\bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggr] 
\leq (4B1 + 2)\| f\| \scrB \.\sigma 

\sqrt{} 
d/M,

which implies there exists \{ (cm,\bfitw m)\} Mm=1 such that the inequality holds. Then the
FNN

\sum M
m=1(cm/M) \.\sigma (\bfitw \top 

m\bfitx )\in \scrF 2,M, \.\sigma ,max\{ \| f\| \scrB \.\sigma 
/M,1\} satisfies (4.22).

Proof of Lemma 4.10. Denote \^pSNN(\bfitx ) = \^pNN(\bfitx ;\bfittheta 
S). Since \^pNN \in \scrF 2,M, \.\sigma ,Q, using

the expression in (4.2) we have \| \nabla \^pSNN\| L2(\partial \Omega ) \leq 1
2MQ4| \partial \Omega | 12 = 1

2MQ4(2d)
1
2 . Then

the inequality (4.23) directly follows Lemma 4.7. For the rest, we use C to represent
any constant which on depends on \Omega , \Lambda , B1, \lambda 1, and \lambda 2. On the one hand,
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| J [\^pSNN] - JS [\^p
S
NN]| 

(A.19)

\leq 

\bigm| \bigm| \bigm| \bigm| \bigm| \| \scrL \^pSNN\| 2L2(\Omega )  - 
| \Omega | 
N1

N1\sum 
n=1

| \scrL \^pSNN(\bfitx 
n
I )| 2

\bigm| \bigm| \bigm| \bigm| \bigm| + \lambda 2

\bigm| \bigm| \bigm| \bigm| \bigm| \| \^pSNN\| 2L2(\partial \Omega )  - 
| \partial \Omega | 
N3

N3\sum 
n=1

| \^pSNN(\bfitx 
n
III)| 2

\bigm| \bigm| \bigm| \bigm| \bigm| 
+ \lambda 1

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Omega 

\^pSNN(\bfitx )d\bfitx  - | \Omega | 
N2

N2\sum 
n=1

\^pSNN(\bfitx 
n
II)

\bigm| \bigm| \bigm| \bigm| \bigm| \cdot 
\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Omega 

\^pSNN(\bfitx )d\bfitx +
| \Omega | 
N2

N2\sum 
n=1

\^pSNN(\bfitx 
n
II) - 2

\bigm| \bigm| \bigm| \bigm| \bigm| .
By virtue of [42, Theorem 3.2], with probability at least 1 - \delta /3,

\bigm| \bigm| \bigm| \bigm| \bigm| \| \scrL \^pSNN\| 2L2(\Omega ) - 
| \Omega | 
N1

N1\sum 
n=1

| \scrL \^pSNN(\bfitx 
n
I )| 2

\bigm| \bigm| \bigm| \bigm| \bigm| +\lambda 2
\bigm| \bigm| \bigm| \bigm| \bigm| \| \^pSNN\| 2L2(\partial \Omega )  - 

| \partial \Omega | 
N3

N3\sum 
n=1

| \^pSNN(\bfitx 
n
III)| 2

\bigm| \bigm| \bigm| \bigm| \bigm| \leq CI1.

(A.20)

Similarly, by the fact | \^pSNN(\bfitx )| \leq MQ4/6 \forall \bfitx and Lemma 4.9, we have, with
probability at least 1 - \delta /3,\bigm| \bigm| \bigm| \bigm| \bigm| 

\int 
\Omega 

\^pSNN(\bfitx )d\bfitx  - | \Omega | 
N2

N2\sum 
n=1

\^pSNN(\bfitx 
n
II)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq CMQ4
\sqrt{} 
log(6/\delta )/N2,(A.21)

and | \Omega | 
N2

\sum N2

n=1 \^p
S
NN(\bfitx 

n
II)\leq CMQ4. Then we have

\lambda 1

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Omega 

\^pSNN(\bfitx )d\bfitx  - | \Omega | 
N2

N2\sum 
n=1

\^pSNN(\bfitx 
n
II)

\bigm| \bigm| \bigm| \bigm| \bigm| \cdot 
\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Omega 

\^pSNN(\bfitx )d\bfitx +
| \Omega | 
N2

N2\sum 
n=1

\^pSNN(\bfitx 
n
II) - 2

\bigm| \bigm| \bigm| \bigm| \bigm| \leq CI2.

(A.22)

On the other hand, by Lemma 4.8 there exist some pNN \in F2,M, \.\sigma ,Q such that

sup
\bfitx \in \Omega 

\bigm| \bigm| \bigm| \^\scrL pNN(\bfitx )
\bigm| \bigm| \bigm| + sup

\bfitx \in \Omega 
| pNN(\bfitx ) - \^p(\bfitx )| + sup

\bfitx \in \partial \Omega 
| pNN(\bfitx ) - \^p(\bfitx )| \leq C\| \^p\| \scrB \.\sigma 

\sqrt{} 
d/M.

(A.23)

Note that
\int 
\Omega 
\^pd\bfitx = 1; we have

\bigm| \bigm| \bigm| \bigm| \bigm| | \Omega | N2

N2\sum 
n=1

pNN(\bfitx 
n
II) - 1

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

(A.24)

\leq 2

\left(  \bigm| \bigm| \bigm| \bigm| \bigm| | \Omega | N2

N2\sum 
n=1

(pNN(\bfitx 
n
II) - \^p(\bfitx n

II))

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+

\bigm| \bigm| \bigm| \bigm| \bigm| | \Omega | N2

N2\sum 
n=1

\^p(\bfitx n
II) - 

\int 
\Omega 

\^pd\bfitx 

\bigm| \bigm| \bigm| \bigm| \bigm| 
2
\right)  

and

| pNN(\bfitx 
n
III)| 

2 \leq 2
\Bigl( 
| pNN(\bfitx 

n
III) - \^p(\bfitx n

III)| 
2
+ \epsilon 2\^p

\Bigr) 
,(A.25)

using the fact that | \^p(\bfitx )| \leq \epsilon \^p on \partial \Omega in Assumption 4.5.
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Then it follows (A.23)--(A.25) and Lemma 4.9 that with probability at least
1 - \delta /3

JS [\^p
S
NN]\leq JS [pNN]\leq 

1

N1

N1\sum 
n=1

| \scrL pNN(\bfitx 
n
I )| 

2
+ 2\lambda 1

\bigm| \bigm| \bigm| \bigm| \bigm| | \Omega | N2

N2\sum 
n=1

(pNN(\bfitx 
n
II) - \^p(\bfitx n

II))

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

(A.26)

+ 2\lambda 1

\bigm| \bigm| \bigm| \bigm| \bigm| | \Omega | N2

N2\sum 
n=1

\^p(\bfitx n
II) - 

\int 
\Omega 

\^p

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+ 2\lambda 2
| \partial \Omega | 
N3

N3\sum 
n=1

\Bigl( 
| pNN(\bfitx 

n
III) - \^p(\bfitx n

III)| 
2
+ \epsilon 2\^p

\Bigr) 
\leq CI3.

Finally, the proof can be completed by using (A.19), (A.20), (A.22), (A.26), and
the fact J [\^pSNN]\leq | J [\^pSNN] - JS [\^p

S
NN]| + JS [\^p

S
NN].
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