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DEEP RITZ METHOD FOR THE SPECTRAL FRACTIONAL
LAPLACIAN EQUATION USING THE CAFFARELLI--SILVESTRE

EXTENSION\ast 

YIQI GU\dagger AND MICHAEL K. NG\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this paper, we propose a novel method for solving high-dimensional spectral
fractional Laplacian equations. Using the Caffarelli--Silvestre extension, the d-dimensional spectral
fractional equation is reformulated as a regular partial differential equation of dimension d + 1.
We transform the extended equation as a minimal Ritz energy functional problem and search for
its minimizer in a special class of deep neural networks. Moreover, based on the approximation
property of networks, we establish estimates on the error made by the deep Ritz method. Numerical
results are reported to demonstrate the effectiveness of the proposed method for solving fractional
Laplacian equations up to 10 dimensions. Technically, in this method, we design a special network-
based structure to adapt to the singularity and exponential decaying of the true solution. Also, a
hybrid integration technique combining the Monte Carlo method and sinc quadrature is developed
to compute the loss function with higher accuracy.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . Ritz method, deep learning, fractional Laplacian, Caffarelli--Silvestre extension,
singularity

\bfM \bfS \bfC \bfc \bfo \bfd \bfe \bfs . 65N15, 65N30, 68T07, 41A25

\bfD \bfO \bfI . 10.1137/21M1442516

1. Introduction. As a nonlocal generalization of the Laplacian - \Delta , the spectral
fractional Laplacian ( - \Delta )s with a fraction s arises in many areas of applications, such
as anomalous diffusion [10, 30], turbulent flows [26], L\'evy processes [16], quantum
mechanics [18], finance [29, 12], and pollutant transport [31]. In this paper, we develop
a network-based Ritz method for solving fractional Laplacian equations using the
Caffarelli--Silvestre extension.

Let d \in \BbbN + be the dimension of the problem and \Omega be a bounded Lipschitz
domain in \BbbR d. Also, suppose 0 < s < 1 and f is a function defined in \Omega . Then
we consider the following spectral fractional Laplacian equation with homogeneous
Dirichlet condition

(1.1)

\Biggl\{ 
( - \Delta )sU(x) = f(x) \forall x \in \Omega ,

U(x) = 0 \forall x \in \partial \Omega ,

where ( - \Delta )s is defined by the spectral decomposition of  - \Delta with the same boundary
conditions. More precisely, we suppose the countable set \{ (\lambda n, \phi n)\} \infty n=1 are all the
eigenvalues and orthonormal eigenfunctions of the following problem:

(1.2)

\left\{ 
 - \Delta \phi = \lambda \phi in \Omega ,

\phi = 0 on \partial \Omega ,

(\phi , \phi ) = 1,
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where (\cdot , \cdot ) is the standard inner product in L2(\Omega ). Then, for any U \in L2(\Omega ),

(1.3) ( - \Delta )sU =

\infty \sum 
n=1

\~Un\lambda 
s
n\phi n, with \~Un := (U, \phi n).

We remark that another definition of the fractional Laplacian is formulated by
integrals with nonlocal structures, and these two definitions do not coincide. It is
difficult to solve fractional Laplacian equations of either definition directly using nu-
merical methods for regular differential equations (e.g., the finite difference method or
finite element method) due to the nonlocal property of the fractional operator [5, 1].
Instead, one effective approach is to use the Caffarelli--Silvestre extension [7]. Specifi-
cally, let us introduce a scalar variable y and consider the following d+1-dimensional
problem:

(1.4)

\left\{       
\nabla \cdot (y\alpha \nabla u(x, y)) = 0 \forall (x, y) \in \scrD := \Omega \times (0,\infty ),

 - lim
y\rightarrow 0

y\alpha uy(x, y) = dsf(x) \forall x \in \Omega ,

u(x, y) = 0 \forall (x, y) \in \partial L\scrD := \partial \Omega \times [0,\infty ),

where \alpha = 1  - 2s and ds = 21 - 2s\Gamma (1  - s)/\Gamma (s). Suppose u(x, y) solves (1.4); then
U(x) := u(x, 0) is a solution of (1.1) [24]. Consequently, one can solve the extended
problem (1.4) with regular derivatives to avoid addressing spectral fractional differen-
tial operators, with the extra cost that (i) the dimension is increased from d to d+1,
and (ii) the domain is extended from the bounded one \Omega to an unbounded cylinder
\partial L\scrD . Several methods have been proposed for (1.4), such as the tensor product finite
element method [24] and the enriched spectral method using Laguerre functions [11].
We remark that the Caffarelli--Silvestre extension is exclusively for the spectral frac-
tional Laplacian and not for the integral fractional Laplacian. Moreover, the extension
technique can be extended to more general fractional symmetric elliptic operators of
the form  - \nabla \cdot (A(x)\nabla U(x)) + C(x)U(x), with A(x) being symmetric and positive
definite and C(x) being positive.

However, conventional linear structures such as finite elements and polynomials
are usually incapable of high-dimensional approximation in practice. For example,
suppose a tensor product linear structure has \~N basis functions in each dimension;
then the total degree of freedom is O( \~Nd), which is a huge number if d is moderately
large. Such a curse of dimensionality prevents one from using linear algebra structures
in high-dimensional problems with d > 3. For the spectral fractional Laplacian, most
existing methods based on the Caffarelli--Silvestre extension could solve numerical
examples of dimension at most two, mainly due to the limitation of storage. Our
primary target is to solve many physically relevant problems that appear in three- or
higher-dimensional situations.

In recent years, deep neural networks (DNNs) have been widely studied and uti-
lized in applied problems. As a composition of simple neural functions, the DNN has
parameters nonlinearly arrayed in the network structure. For a fully connected DNN
with depth L, width M , and dimension of inputs d, the total number of parameters
is of O(LM2 + Md). Therefore, the degree of freedom increases linearly with the
dimension and DNNs are capable of dealing with high-dimensional approximation in
practice. Theoretically, it is shown that DNNs have decent approximation properties
for particular function spaces (e.g., Barron space). The seminal work of Barron [2, 3]
deduces L2-norm and L\infty -norm approximations of two-layer sigmoid networks. Re-
cent work [17, 14, 15, 13, 27, 28, 9, 19] considers more variants of the network-based
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approximation for Barron-type spaces. Generally, given a Barron function g : \Omega \rightarrow \BbbR ,
there exists a two-layer neural network gM with width M and common-used activa-
tions such that

(1.5) \| g  - gM\| \Omega \leq O

\biggl( 
\| g\| \scrB \surd 
M

\biggr) 
,

where \| g\| \scrB is the Barron norm of g, and \| \cdot \| \Omega can be an L2(\Omega ), H1(\Omega ), or L\infty (\Omega )
norm under different hypotheses. It is worth mentioning that the above error bound
is independent of the dimension of the input variable; hence the network-based ap-
proximation can overcome the curse of dimensionality.

In this paper, we solve (1.4) by the Ritz method, in which DNNs are employed
to approximate the solution. More precisely, we reformulate (1.4) as a minimal Ritz
energy functional problem and characterize the Sobolev space of the weak solution.
Next, as a subset of the solution space, a class of DNNs is taken as the hypothesis
space of the minimization. We design a special network structure for the DNN class
such that (i) it satisfies the homogeneous boundary condition on \partial L\scrD in (1.4); (ii) it
decays to zero exponentially as y \rightarrow \infty ; and (iii) it has a singularity that behaves as
O(yk+1 - \alpha ) for integers k at y = 0. Note that the second and third properties men-
tioned above are also satisfied by the true solution. Consequently, the special DNNs
have better approximation performance than generic DNNs, which is also observed in
our numerical experiments.

Theoretically, under a Barron-type framework, we investigate the approximation
error between the special DNN class and the solution space under the Sobolev norm,
which has a form similar to (1.5). Based on that, we estimate the solution error of the
proposed Ritz method using the special DNN class, assuming that the true solution
has components in the Barron space. The final solution error is of O(M - 1/2), which
is consistent with the approximation error. We remark that the error bound of our
method is advantageous over the existing methods [24, 11] using finite element or
Laguerre functions if the dimension is moderately large since the error order  - 1/2 is
independent of the dimension. Also, the error order is consistent with the deep Ritz
method for regular Laplacian equations [23].

In the implementation, a combination of stochastic and deterministic methods is
employed to compute the integrals in the energy functional. Specifically, we utilize the
quasi--Monte Carlo method and the sinc quadrature rule [21] to evaluate the integrals
in terms of x and y, respectively. For the former, due to the potentially high dimension
of x, Monte Carlo--type methods are effective and easy to implement. For the latter,
although the integrand in terms of y is one-dimensional, it has a singular term y\alpha 

when \alpha \not = 0. Note that sinc quadrature is highly accurate for integrals with fractional
powers and therefore preferred here. By numerical experiments, we demonstrate that
our method can solve model problems up to d = 10 with desired accuracy. To the
best of our knowledge, this is the first attempt to solve high-dimensional fractional
Laplacian equations by deep learning methods.

Overall, the highlights of our work can be summarized as follows:
\bullet development of a special approximation structure based on generic DNNs
according to the special properties of the true solution;

\bullet combination of the stochastic Monte Carlo method for high dimensions and
deterministic sinc quadrature for high accuracy in the learning process;

\bullet simulation of 10-dimensional fractional Laplacian equations with relative er-
ror O(10 - 2).

The rest of the paper is organized as follows. In section 2, we reformulate the
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problem (1.4) as the minimization of an energy functional and show their equivalence.
In section 3, the fully connected neural networks are introduced. We characterize the
special structures of the hypothesis space and discuss its approximation property. In
section 4, we derive the error estimate for the proposed method. Numerical exper-
iments are presented to show the effectiveness of our method in section 5. Finally,
some concluding remarks are given in section 6.

2. Minimization of energy functional. We solve the regular partial differ-
ential equation (1.4) under the framework of the Ritz method. The equation can
be transformed to an equivalent minimal functional, and we look for Sobolev weak
solutions instead of classical solutions. Similarly, one can also solve (1.4) using the
Galerkin method by introducing appropriate test spaces such as in [24, 11]. Since
learning-based methods aim to find solutions via optimization, the use of the Ritz
method can be achieved for building such a formulation.

2.1. The space of weak solutions. Let \scrZ be any region and \omega be a positive
weight function. We define the weighted L2 space as

(2.1) L2
\omega (\scrZ ) :=

\biggl\{ 
v
\bigm| \bigm| \bigm| \int 

\scrZ 
| v(z)| 2\omega (z)dz < \infty 

\biggr\} 
,

equipped with the inner product

(2.2) (v1, v2)\omega ,\scrZ :=

\int 
\scrZ 
v1(z)v2(z)\omega (z)dz \forall v1, v2 \in L2

\omega (\scrZ )

and the induced norm

(2.3) \| v\| \omega ,\scrZ := (v, v)
1
2

\omega ,\scrZ .

The weight \omega is omitted from the notations if \omega \equiv 1.
We also define the weighted Sobolev space as

(2.4) H1
\omega (\scrZ ) :=

\bigl\{ 
v | v \in L2

\omega (\scrZ ),\nabla v \in L2
\omega (\scrZ )

\bigr\} 
,

equipped with the norm

(2.5) \| v\| 1,\omega ,\scrZ :=
\bigl( 
\| v\| 2\omega ,\scrZ + \| \nabla v\| 2\omega ,\scrZ 

\bigr) 1
2 .

It is shown in [22] that the solution of the extended problem (1.4) has a desirable
property that it converges exponentially to zero as y \rightarrow \infty . Therefore, we can define
the solution space as

(2.6) H1,b
y\alpha (\scrD ) :=

\biggl\{ 
v \in H1

y\alpha (\scrD )
\bigm| \bigm| \bigm| lim
y\rightarrow \infty 

v(x, y) = 0, v(x, y)| \partial L\scrD = 0

\biggr\} 
,

with the norm

(2.7) \| v\| H1,b
y\alpha (\scrD ) = \| \nabla v\| y\alpha ,\scrD .

Denote the trace for all v \in H1,b
y\alpha (\scrD ) by

(2.8) tr\{ v\} (x) = v(x, 0).

Moreover, for column vectors or vector-valued functions, we use | \cdot | to denote
their Euclidean norm.
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2.2. Minimal energy functional. We aim to characterize the solution of (1.4)
as a minimizer of a corresponding energy functional. For this, we define the functional

(2.9) \scrI [w] := 1

2
(\nabla w,\nabla w)y\alpha ,\scrD  - ds (f, tr\{ w\} )\Omega \forall w \in H1,b

y\alpha (\scrD ).

We have the following result.

Theorem 2.1. Assume u \in H1,b
y\alpha (\scrD ) solves (1.4). Then

(2.10) \scrI [u] = min
w\in H1,b

y\alpha (\scrD )
\scrI [w].

Conversely, if u satisfies (2.10), then u solves the problem (1.4).

Proof. To prove (2.10), for all w \in H1,b
y\alpha (\scrD ), u  - w \in H1,b

y\alpha (\scrD ). Then, using the
fact that (u - w)| \partial L\scrD = (u - w)| \Omega \times \{ +\infty \} = 0 and integration by parts, we have

(2.11) (\nabla \cdot (y\alpha \nabla u) , u - w)\scrD =  - (y\alpha \nabla u,\nabla (u - w))\scrD + ( - y\alpha uy, u - w)\Omega \times \{ 0\} .

Note that the left-hand side is equal to zero since \nabla \cdot (y\alpha \nabla u) \equiv 0. And the second
term on the right-hand side is

(2.12) ( - y\alpha uy, u - w)\Omega \times \{ 0\} = ( - y\alpha uy| y=0, u(x, 0) - w(x, 0))\Omega 

=

\biggl( 
lim
y\rightarrow 0

( - y\alpha uy), u(x, 0) - w(x, 0)

\biggr) 
\Omega 

= (dsf(x), tr\{ u\}  - tr\{ w\} )\Omega .

Therefore, it follows (2.11),

(2.13) (y\alpha \nabla u,\nabla (u - w))\scrD = (dsf(x), tr\{ u\}  - tr\{ w\} )\Omega ,

which implies

(2.14) (\nabla u,\nabla u)y\alpha ,\scrD  - ds (f, tr\{ u\} )\Omega = (\nabla u,\nabla w)y\alpha ,\scrD  - ds (f, tr\{ w\} )\Omega .

Using the inequality \nabla u \cdot \nabla w \leq 1
2 | \nabla u| 2 + 1

2 | \nabla w| 2, it leads to

(2.15) \scrI [u] \leq \scrI [w].

On the other hand, suppose (2.10) holds. Fix any w \in H1,b
y\alpha (\scrD ), and write

(2.16) i(\tau ) := \scrI [u+ \tau w] \forall \tau \in \BbbR .

Note that

(2.17) i(\tau ) =
1

2
(\nabla (u+ \tau w),\nabla (u+ \tau w))y\alpha ,\scrD  - ds (f, tr\{ u+ \tau w\} )\Omega 

=
1

2
(\nabla u,\nabla u)y\alpha ,\scrD  - ds (f, tr\{ u\} )\Omega +\tau 

\bigl( 
(\nabla u,\nabla w)y\alpha ,\scrD  - ds (f, tr\{ w\} )\Omega 

\bigr) 
+
1

2
\tau 2 (\nabla w,\nabla w)y\alpha ,\scrD .

Since u+ \tau w \in H1,b
y\alpha (\scrD ) for each \tau , i(\tau ) takes its minimum at \tau = 0, and thus

(2.18) 0 = i\prime (0) = (\nabla u,\nabla w)y\alpha ,\scrD  - ds (f, tr\{ w\} )\Omega .

Using integration by parts, we have

(2.19) (\nabla \cdot (y\alpha \nabla u) , w)\scrD +

\biggl( 
dsf + lim

y\rightarrow 0
y\alpha uy, tr\{ w\} 

\biggr) 
\Omega 

= 0.
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Especially, (2.19) holds for all w \in C\infty 
c (\scrD ), which implies

(2.20)

\int 
\scrD 
(\nabla \cdot (y\alpha \nabla u))w = 0 \forall w \in C\infty 

c (\scrD ),

leading to \nabla \cdot (y\alpha \nabla u) = 0 in \scrD . And thus by (2.19),

(2.21)

\biggl( 
dsf + lim

y\rightarrow 0
y\alpha uy, tr\{ w\} 

\biggr) 
\Omega 

= 0.

Especially, tr\{ w\} takes over all functions in C\infty 
c (\Omega ), which leads to dsf+limy\rightarrow 0 y\alpha uy =

0 in \Omega .

By virtue of Theorem 2.1, it suffices to solve the optimization

(2.22) min
w\in H1,b

y\alpha (\scrD )
\scrI [w],

whose solution is exactly a weak solution of the extended problem (1.4).

3. Neural network approximation. In the numerical computation, one aims
to introduce a function set with a finite degree of freedom to approximate the solu-
tion space H1,b

y\alpha (\scrD ) and minimize \scrI [\cdot ] in this appropriate set of functions. In many
physically relevant problems, it is required to address d \geq 3, causing the dimension
of \scrD to be no less than 4. Potentially high dimensions impede the usage of conven-
tional linear structures. However, as a nonlinear structure, DNNs can approximate
high-dimensional functions by moderately fewer degrees of freedom. This inspires us
to use classes of DNNs to approximate H1,b

y\alpha (\scrD ), especially when d is large.

3.1. Fully connected neural network. In our method, we employ the fully
connected neural network (FNN), which is one of the most common neural networks
in deep learning. Mathematically speaking, let \sigma (t) be an activation function which
is applied entrywise to a vector x to obtain another vector of the same size. Let
L \in \BbbN + and M\ell \in \BbbN + for \ell = 1, . . . , L; then an FNN \^\phi is the composition of L simple
nonlinear functions as follows:

(3.1) \^\phi (z; \theta ) := aThL \circ hL - 1 \circ \cdot \cdot \cdot \circ h1(z) for z \in \BbbR d,

where a \in \BbbR ML ; h\ell (z\ell ) := \sigma (W\ell z\ell + b\ell ) with W\ell \in \BbbR M\ell \times M\ell  - 1 (M0 := d) and
b\ell \in \BbbR M\ell for \ell = 1, . . . , L. Here M\ell is called the width of the \ell th layer and L is
called the depth of the FNN. \theta := \{ a, W\ell , b\ell : 1 \leq \ell \leq L\} is the set of all parameters

in \^\phi to determine the underlying neural network. Common types of activation func-
tions include the sigmoid function (1 + e - t) - 1 and the rectified linear unit (ReLU)
max(0, t). We remark that, when solving kth order differential equations, many ex-
isting network-based methods use the ReLUk+1 activation function max\{ 0, tk+1\} , so
that their networks are Ck functions and can be applied by the differential operators.
While in the minimization (2.22), only H1 regularity is required, and therefore ReLU
networks suffice.

Denote M := max \{ M\ell , 1 \leq \ell \leq L\} ; then it is clear that | \theta | = O(M2L +
Md). Comparatively, the degree of freedom of linear structures such as finite elements
and tensor product polynomials increases exponentially with d. Hence FNNs are
more practicable in high-dimensional approximations. For simplicity, we consider the
architectureM = M\ell for all \ell and denote \scrF L,M,\sigma as the set consisting of all FNNs with
depth L, width M , and activation function \sigma . In the following passage, all functions
involving an FNN will be denoted with the superscript\^.
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3.2. Special structures of the approximate class. Recent work [20, 25]
indicates that deep FNNs can approximate smooth functions in an \infty -norm within
any desired accuracy as long as the depth or width is large enough. The approximation
will be more accurate if the target function has higher regularity. However, it is shown
in [8, 11] that the solution of (1.4) has a singularity at y = 0 which behaves as yk+1 - \alpha 

for k \in \BbbN +. Therefore, it is not appropriate to naively use the class of generic FNNs.
Instead, we aim to develop a special structure based on FNNs for the approximate
class.

In the enriched spectral method [11], the solution of (2.19) is approximated by a
structure consisting of two parts. One part is a linear combination of smooth basis
functions, which approximates the regular component of the solution. The other part
is a linear tensor product combination of smooth basis functions and a sequence of
artificial terms \{ yk - \alpha \} k=1,2,..., which is for the singular component of the solution.

Following this idea, we use \^\phi (x, y) to denote any function in the approximate class
and build its structure as the combination of two parts,

(3.2) \^\phi (x, y) = \^\phi 1(x, y) + y1 - \alpha \^\phi 2(x, y),

where \^\phi 1, \^\phi 2 are FNN-based smooth functions and the term y1 - \alpha is introduced to
adapt to the singularity at y = 0.

Moreover, since the true solution of the extended problem (1.4) converges to zero
as y \rightarrow \infty , the functions in the approximate class should also preserve this property.
To realize it, we can introduce exponential terms concerning y in the structure of
\^\phi (x, y). Specifically, we let

(3.3) \^\phi 1(x, y) = \^\phi 3(x, y)e
 - \gamma \prime y, \^\phi 2(x, y) = \^\phi 4(x, y)e

 - \gamma \prime \prime y,

where \{ \^\phi 3, \^\phi 4\} are FNN-based functions and \{ \gamma \prime , \gamma \prime \prime \} > 0 are two auxiliary scalar

parameters ensuring that \^\phi 1 and \^\phi 2 converge to zero as y \rightarrow \infty exponentially.
In the end, as a subset of H1,b

y\alpha (\scrD ), the approximate class should also consist of

functions satisfying the boundary condition; namely, \^\phi | \partial L\scrD = 0. We achieve this by
setting

(3.4) \^\phi 3(x, y) = \^\phi \prime (x, y)h(x), \^\phi 4(x, y) = \^\phi \prime \prime (x, y)h(x),

where \{ \^\phi \prime , \^\phi \prime \prime \} are generic FNNs and h(x) is a smooth function constructed particu-
larly to satisfy h(x) = 0 on \partial \Omega . For example, if \Omega is a hypercube (a1, b1)\times \cdot \cdot \cdot \times (ad, bd),

then h(x) can be chosen as h(x) =
\prod d

i=1(xi  - ai)(xi  - bi); if \Omega has a boundary char-
acterized by a level set, say \partial \Omega = \{ x | \rho (x) = 0\} , for some continuous function \rho ,
then h(x) can be chosen as h(x) = \rho (x). Generally, we can set h(x) = F (dist(x, \partial \Omega )),
where F is a particular analytic function satisfying F (0) = 0 and dist(x, \partial \Omega ) repre-
sents the distance between x and \partial \Omega . In practice, we expect to set h(x) as smooth as

possible so that \^\phi 3 and \^\phi 4 preserve the same regularity as \^\phi \prime and \^\phi \prime \prime , respectively.
To sum up, we build the following special structure for the approximate class,

(3.5) \^\phi ((x, y); \theta ) = \^\phi \prime ((x, y); \theta \prime )h(x)e - \gamma \prime y + y1 - \alpha \^\phi \prime \prime ((x, y); \theta \prime \prime )h(x)e - \gamma \prime \prime y,

where \theta := \{ \theta \prime , \theta \prime \prime , \gamma \prime , \gamma \prime \prime \} is the set of all trainable parameters. We denote \scrN L,M,\sigma ,h
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as the class of all neural networks having the structure in (3.5); namely,

(3.6)

\scrN L,M,\sigma ,h =
\Bigl\{ 
\^\phi : \scrD \rightarrow \BbbR 

\bigm| \bigm| \bigm| \^\phi (x, y) = \^\phi \prime (x, y)h(x)e - \gamma \prime y + y1 - \alpha \^\phi \prime \prime (x, y)h(x)e - \gamma \prime \prime y

\forall \^\phi \prime , \^\phi \prime \prime \in \scrF L,M,\sigma , \forall \gamma \prime , \gamma \prime \prime \in \BbbR +
\Bigr\} 
.

It is clear that \scrN L,M,\sigma ,h is a subset of H1,b
y\alpha (\scrD ) as long as \sigma is Lipschitz continuous

and has a polynomial growth bound; namely, | \sigma (t)| \leq C(1 + | t| p) for all t \in \BbbR with a
constant C > 0 and an integer p > 0. In our Ritz method, \scrN L,M,\sigma ,h is taken as the

approximate class of H1,b
y\alpha (\scrD ).

3.3. Approximation property. We will show that functions in H1,b
y\alpha (\scrD ) can

be approximated by the special networks in \scrN L,M,\sigma ,h as M \rightarrow \infty . To illustrate
the approximation property, we first introduce the Barron space and then derive the
error bounds for neural-network approximation, assuming that the target function has
components in the Barron space. In this section, we specifically focus on the FNNs
with ReLU activation and specify \sigma (x) = max(x, 0). For simplicity, we concatenate
variables x \in \BbbR d and y \in \BbbR by writing z = (x, y) \in \BbbR d+1.

3.3.1. Barron space. Let us first quickly review the Barron space and norm.
We will focus on the definition discussed in [15] which represents infinitely wide two-
layer ReLU FNNs. Following section 3.1, recall that the set of two-layer ReLU FNNs
without output bias is given by
(3.7)

\scrF 2,M,ReLU =

\Biggl\{ 
\^\phi 
\bigm| \bigm| \bigm| \^\phi (z) = 1

M

M\sum 
i=1

ai\sigma (b
T
i z + ci) \forall (ai, bi, ci) \in \BbbR \times \BbbR d+1 \times \BbbR 

\Biggr\} 
.

For a probability measure \pi on \BbbR \times \BbbR d+1 \times \BbbR , we set the function

(3.8) f\pi (z) =

\int 
\scrD 
a\sigma (bT z + c)\pi (da,db,dc) = \BbbE \pi [a\sigma (b

T z + c)] \forall z \in \BbbR d+1,

given this expression exists. For a function u : \BbbR d+1 \rightarrow \BbbR , we use \Pi u to denote the
set of all probability measures \pi such that f\pi (z) = u(z) almost everywhere. Then the
Barron norm is defined as

(3.9) \| u\| 2\scrB := inf
\pi \in \Pi u

\int 
\BbbR \times \BbbR d+1\times \BbbR 

a2(| b| + | c| )2\pi (da,db,dc) = inf
\pi \in \Pi u

\BbbE \pi [a
2(| b| + | c| )2].

The infimum of the empty set is considered as +\infty . The set of all functions with finite
Barron norm is denoted by \scrB . It is shown in [15] that \scrB equipped with the Barron
norm is a Banach space which is called Barron space.

3.4. Error estimation. Let u be a function in \in H1,b
y\alpha (\scrD ), and further assume

that u converges to zero exponentially as y \rightarrow \infty . In the error analysis, we make the
assumption that u can be factorized explicitly by components vanishing on \partial L\scrD and
decaying to zero exponentially as y \rightarrow \infty .

Assumption 3.1. There exist functions h \in H1
0 (\Omega ), v \in \scrB and some number

\eta > 0 such that

(3.10) u(z) = v(z)h(x)e - \eta y.
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Especially, if Assumption 3.1 holds, we can normalize h such that | h| \leq 1 and
| \nabla h| \leq 1. Assumption 3.1 is indeed satisfied in some situations. For example, in
the case \Omega = [ - 1, 1]2, s = 0.5, and f =

\surd 
2\pi sin(\pi x1) sin(\pi x2), the solution u of

(1.4) is given by u = sin(\pi x1) sin(\pi x2)e
 - 
\surd 
2\pi y. Note that by Taylor series sin(\pi x) =

 - \pi 
2 (x

2  - 1) + \pi 
8 (x

2  - 1)2 +O
\bigl( 
(x2  - 1)3

\bigr) 
, u can be written as (3.10) with

v =
\Bigl( 
 - \pi +

\pi 

4
(x2

1  - 1) +O
\bigl( 
(x1

1  - 1)2
\bigr) \Bigr) \Bigl( 

 - \pi +
\pi 

4
(x2

2  - 1) +O
\bigl( 
(x2

2  - 1)2
\bigr) \Bigr) 

,

h =
(x2

1  - 1)(x2
2  - 1)

4
, \eta =

\surd 
2\pi .

Now we investigate the approximation error between \scrN 2,M,ReLU,h and H1,b
y\alpha (\scrD ).

It suffices to consider a special subset \scrS 2,M,ReLU,h given by

(3.11) \scrS 2,M,ReLU,h =
\bigl\{ 
\^u | \^u(z) = \^v(z)h(x)e - \eta y \forall \^v \in \scrF 2,M,ReLU

\bigr\} 
.

Note that in \scrS 2,M,ReLU,h only the parameters of \^v are free and trainable, while \eta is
fixed. Clearly, \scrS 2,M,ReLU,h is a subset of \scrN 2,M,ReLU,h. The following theorem and
proof refer to the result in [23] for the deep Ritz method in a bounded domain.

Theorem 3.1. Let u \in H1,b
y\alpha (\scrD ). If Assumption 3.1 is true with | h| \leq 1 and

| \nabla h| \leq 1, then there exists some \^u \in \scrS 2,M,ReLU,h such that

(3.12) \| \^u - u\| H1,b
y\alpha (\scrD ) \leq C(\Omega , \eta )M - 1

2 \| v\| \scrB ,

with
(3.13)

C(\Omega , \eta ) = 2
3
2 | \Omega | 

1
2

\biggl[ 
R2

\Omega + 1

\alpha + 1
+

1

\alpha + 3
+

(4\eta 3 + 2\eta 2)(R2
\Omega + 1) + 4\eta 3 + 6\eta 2 + 6\eta + 3

8\eta 4
e - 2\eta 

\biggr] 1
2

,

where R\Omega := max (supx\in \Omega | x| , 1).
Proof. By the definition of the Barron norm, there exists some probability mea-

sure \pi such that f\pi = v almost everywhere and \BbbE \pi 

\bigl[ 
a2(| b| + | c| )2

\bigr] 
\leq 2\| v\| 2\scrB . For all

(a, b, c) \in \BbbR \times \BbbR d+1 \times \BbbR , using the facts | \sigma (t)| \leq | t| and | \sigma \prime (t)| = \chi t\geq 0 we have

\| a\sigma (bT z + c)\| 21,e - 2\eta yy\alpha ,\scrD =

\int 
\scrD 

\bigl[ 
| a\sigma (bT z + c)| 2 + | \nabla (a\sigma (bT z + c))| 2

\bigr] 
e - 2\eta yy\alpha dz

\leq 
\int 
\scrD 

\bigl[ 
a2(bT z + c)2 + a2\chi bT z+c\geq 0| \nabla (bT z + c)| 2

\bigr] 
e - 2\eta yy\alpha dz

\leq 
\int 
\scrD 

\bigl[ 
a2(| b| | z| + | c| )2 + a2| b| 2

\bigr] 
e - 2\eta yy\alpha dz.(3.14)

Since | z| = (| x| 2 + y2)
1
2 \leq (R2

\Omega + y2)
1
2 , we have\int 

\scrD 

\bigl[ 
a2(| b| | z| + | c| )2 + a2| b| 2

\bigr] 
e - 2\eta yy\alpha dz

\leq 
\int 
\scrD 

\bigl[ 
(R2

\Omega + y2)a2(| b| + | c| )2 + a2| b| 2
\bigr] 
e - 2\eta yy\alpha dz

\leq a2(| b| + | c| )2
\int 
\scrD 
(R2

\Omega + y2 + 1)e - 2\eta yy\alpha dz

\leq a2(| b| + | c| )2| \Omega | 
\int \infty 

0

(R2
\Omega + y2 + 1)e - 2\eta yy\alpha dy := a2(| b| + | c| )2| \Omega | \cdot I1.(3.15)
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On the other hand, I1 is bounded above since

(3.16) I1 \leq 
\int 1

0

(R2
\Omega + y2 + 1)y\alpha dy +

\int \infty 

1

(R2
\Omega + y2 + 1)e - 2\eta yydy

=

\biggl( 
R2

\Omega + 1

\alpha + 1
+

1

\alpha + 3

\biggr) 
+

(4\eta 3 + 2\eta 2)(R2
\Omega + 1) + 4\eta 3 + 6\eta 2 + 6\eta + 3

8\eta 4
e - 2\eta := I2.

Combining (3.14), (3.15), and (3.16), we have

(3.17) \BbbE \pi 

\Bigl[ 
\| a\sigma (bT z + c)\| 21,e - 2\eta yy\alpha ,\scrD 

\Bigr] 
\leq \BbbE \pi 

\bigl[ 
a2(| b| + | c| )2

\bigr] 
| \Omega | \cdot I2 \leq 2I2| \Omega | \cdot \| v\| 2\scrB .

On the other hand, the mapping

\BbbR \times \BbbR d+1 \times \BbbR , (a, b, c) \rightarrow a\sigma (bT z + c)

is continuous and hence Bochner measurable. Also, (3.17) leads to

\BbbE \pi 

\bigl[ 
\| a\sigma (bT z + c)\| 1,e - 2\eta yy\alpha ,\scrD 

\bigr] 
\leq 
\Bigl( 
\BbbE \pi 

\Bigl[ 
\| a\sigma (bT z + c)\| 21,e - 2\eta yy\alpha ,\scrD 

\Bigr] \Bigr) 1
2

< \infty ,

which implies the integral
\int 
\scrD a\sigma (bT z + c)\pi (da,db,dc) is a Bochner integral.

We note the fact that if \xi 1, . . . , \xi M are independent samples from a random vari-
able \xi , then

\BbbE 

\Biggl( 
1

M

M\sum 
i=1

\xi i  - \BbbE \xi 

\Biggr) 2

= \BbbE 

\Biggl( 
1

M

M\sum 
i=1

(\xi i  - \BbbE \xi )

\Biggr) 2

=
1

M2

\left(  M\sum 
i=1

\BbbE (\xi i  - \BbbE \xi )2 +
\sum 

1\leq i<j\leq M

\BbbE (\xi i  - \BbbE \xi ) \cdot \BbbE (\xi j  - \BbbE \xi )

\right)  =
1

M

M\sum 
i=1

\BbbE (\xi  - \BbbE \xi )2

=
1

M
\BbbE \xi 2  - 1

M
(\BbbE \xi )2 \leq 1

M
\BbbE \xi 2.

By a similar argument, for independent samples \{ (ai, bi, ci)\} from \pi , we have

\BbbE \pi M

\left[  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

M

M\sum 
i=1

ai\sigma (b
T
i z + ci) - f\pi (z)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

1,e - 2\eta yy\alpha ,\scrD 

\right]  \leq 1

M
\BbbE \pi 

\Bigl[ 
\| a\sigma (bT z + c)\| 21,e - 2\eta yy\alpha ,\scrD 

\Bigr] 
.

In particular, there exists \{ (ai, bi, ci)\} such that
(3.18)\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

M

M\sum 
i=1

ai\sigma (b
T
i z + ci) - f\pi (z)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

1,e - 2\eta yy\alpha ,\scrD 

\leq 1

M
\BbbE \pi 

\Bigl[ 
\| a\sigma (bT z + c)\| 21,e - 2\eta yy\alpha ,\scrD 

\Bigr] 
.

Let \^v = 1
M

\sum M
i=1 ai\sigma (b

T
i z + ci). Combining (3.17) and (3.18), we obtain

(3.19) \| \^v  - v\| 21,e - 2\eta yy\alpha ,\scrD \leq 2I2| \Omega | M - 1 \cdot \| v\| 2\scrB .

Finally, let \^u = \^v(z)h(x)e - \eta y and denote \=v := \^v  - v; then

\| \^u - u\| 2
H1,b

y\alpha (\scrD )

= \| \nabla (\=v(z)h(x)e - \eta y)\| 2y\alpha ,\scrD 

=

\int 
\scrD 

\bigl( 
| h(x)\nabla x\=v(z) + \=v(z)\nabla xh(x)| 2 + | \partial y\=v(z) - \=v(z)| 2h2(x)

\bigr) 
e - 2\eta yy\alpha dz

\leq 4

\int 
\scrD 

\bigl( 
| \nabla \=v| 2 + | \=v| 2

\bigr) 
e - 2\eta yy\alpha dz = 4\| \^v  - v\| 21,e - 2\eta yy\alpha ,\scrD .(3.20)
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The inequality (3.12) directly follows (3.19) and (3.20).

Theorem 3.1 provides a fractional equation dimension-independent approxima-
tion error bound for neural networks in \scrS 2,M,ReLU,h given that the target function u
has a Barron component. This is a desired property since it avoids the curse of dimen-
sionality. Since \scrS 2,M,ReLU,h \subset \scrN 2,M,ReLU,h, Theorem 3.1 also holds for \scrN 2,M,ReLU,h.

4. Ritz method and error estimation. The extended problem (1.4) can be
solved practically by the Ritz method. Thanks to the approximation property of the
neural network class discussed in section 3.3, we can replace the hypothesis space
H1,b

y\alpha (\scrD ) with \scrN L,M,\sigma ,h in the minimization (2.22), obtaining

(4.1) min
\^w\in \scrN L,M,\sigma ,h

\scrI [ \^w].

Then the solution of (4.1) will be an approximation to the solution of (2.22). As
in section 3.3, we will estimate the solution error for the two-layer ReLU networks;
namely, we consider the case that L = 2 and \sigma (t) = max(0, t). The final error of the
original problem (1.1) will thereafter be presented.

4.1. Error estimation. Let u\ast \in H1,b
y\alpha (\scrD ) be a minimizer of (2.22); namely,

(4.2) \scrI [u\ast ] = min
w\in H1,b

y\alpha (\scrD )
\scrI [w].

Given that Assumption 3.1 holds for u\ast with a factorization u\ast (z) = v\ast (z)h\ast (x)e - \eta \ast y,
let \^u\ast \in \scrN 2,M,ReLU,h\ast be a minimizer of (4.1); namely,

(4.3) \scrI [\^u\ast ] = min
\^w\in \scrN 2,M,ReLU,h\ast 

\scrI [ \^w].

We first introduce the following C\'ea lemma [22].

Proposition 4.1. Let X be a Hilbert space, V \subset X any subset, and a : X\times X \rightarrow 
\BbbR a symmetric, continuous, and \alpha -coercive bilinear form. For f \in X \prime , define the
quadratic energy Ef (u) := 1

2a(u, u)  - f(u) and denote its unique minimizer by uf .
Then, for every v \in V , it holds that

(4.4) \| v  - uf\| X \leq 

\sqrt{} 
\alpha  - 1

\biggl( 
2

\biggl( 
Ef (v) - inf

\~v\in V
Ef (\~v)

\biggr) 
+ inf

\~v\in V
(\~v  - uf , \~v  - uf )

\biggr) 
.

It is trivial to show that (\nabla \cdot ,\nabla \cdot )y\alpha ,\scrD is a symmetric, continuous, and 1-coercive
bilinear form. Therefore, by Proposition 4.1 and Theorem 3.1, we have

(4.5) \| \^u\ast  - u\ast \| H1,b
y\alpha (\scrD ) \leq 

\sqrt{} 
inf

\^u\in \scrN 2,M,ReLU,h\ast 
(\nabla (\^u - u\ast ),\nabla (\^u - u\ast ))y\alpha ,\scrD 

\leq inf
\^u\in \scrN 2,M,ReLU,h\ast 

\| \^u - u\ast \| H1,b
y\alpha (\scrD ) \leq C(\Omega , \eta \ast )M - 1

2 \| v\ast \| \scrB .

To derive the error for the original problem (1.1), we introduce the following trace
theorem [24].

Proposition 4.2. The trace operator tr defined in (2.8) satisfies tr\{ H1,b
y\alpha (\scrD )\} =

\BbbH s(\Omega ), and

(4.6) \| tr\{ u\} \| \BbbH s(\Omega ) \leq C\| u\| H1,b
y\alpha (\scrD ) \forall u \in H1,b

y\alpha (\scrD ),
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where C is a constant only depending on \Omega and s, and the space \BbbH s(\Omega ) is defined as

(4.7) \BbbH s(\Omega ) =

\Biggl\{ 
u =

\infty \sum 
n=1

\~un\phi n \in L2(\Omega ) : \| u\| \BbbH s =

\infty \sum 
n=1

\lambda s
n| \~un| 2 < \infty 

\Biggr\} 
,

with (\lambda n, \phi n) being all the eigenvalues and orthonormal eigenfunctions of (1.2). Es-
pecially, \BbbH s(\Omega ) can characterized by

(4.8) \BbbH s(\Omega )u =

\left\{     
Hs(\Omega ), s \in (0, 1

2 ),

H
1
2
00(\Omega ), s = 1

2 ,

Hs
0(\Omega ), s \in ( 12 , 1),

where

(4.9) H
1
2
00(\Omega ) =

\biggl\{ 
u \in H

1
2 (\Omega ) :

\int 
\Omega 

| u(x)| 2

dist(x, \partial \Omega )
dx < \infty 

\biggr\} 
.

Recall that the solution of original problem (1.1) is exactly the trace of the solution
of the extended problem (1.4). Also, Theorem 2.1 shows the equivalence between the
extended problem (1.4) and the minimization problem (2.22). Therefore, combining
(4.5) and (4.6) leads to the following error estimate for the original solution.

Theorem 4.3. Given that the solution u\ast of (2.22) satisfies Assumption 3.1,
say u\ast (z) = v\ast (z)h\ast (x)e - \eta \ast y, let U\ast (x) be the solution of (1.1) and \^u\ast (x, y) be the
solution of (4.1) with L = 2, h = h\ast , and \sigma (\cdot ) = max(0, \cdot ). Then

(4.10) \| \^u\ast (x, 0) - U\ast (x)\| \BbbH s(\Omega ) \leq CM - 1
2 \| v\ast \| \scrB ,

where C is a constant only depending on \Omega , s, and \eta \ast .

For our network-based method, we obtain the solution error O(M - 1/2) provided
that the true solution has a Barron component. This order  - 1/2 is consistent with
that of the deep Ritz method solving regular Laplacian equations [23] proved under
the similar Barron framework. Moreover, the proposed method can be compared with
existing methods solving the fractional Laplacian [24, 11]. In the early work, finite
elements or Laguerre functions are used to approximate the solution, having error

orders of O(N
 - \nu /d
p ), where \nu characterizes the regularity of the true solution and Np

is the number of free parameters. If d is relatively low, say d < 2\nu , then  - \nu /d <  - 1/2,
and hence the early methods converge faster. Otherwise, the network-based methods
outperform the existing methods in the error order. This fact implies that neural
networks are advantageous over other classical structures in the high-dimensional
approximation.

4.2. Implementation. In the proposed method, we solve the optimization (4.1),
finding a minimizer of \scrI [\cdot ] in the hypothesis space \scrN L,M,\sigma ,h. Note that

(4.11) \scrI [ \^\phi (x, y)] = 1

2

\int \infty 

0

y\alpha 
\biggl( \int 

\Omega 

| \nabla \^\phi (x, y)| 2dx
\biggr) 
dy  - ds

\int 
\Omega 

f(x)\^\phi (x, 0)dx.

In practice, numerical quadrature is required for the integrals in (4.11). Since d
might be moderately large, for the integral in terms of x over \Omega , one choice is using
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Monte Carlo--type quadrature. Specifically, we prescribe a set of N quadrature nodes
\scrT = \{ xn\} Nn=1 which are uniformly distributed in \Omega ; then, for each y \in (0,\infty ),
(4.12)\int 

\Omega 

| \nabla \^\phi (x, y)| 2dx \approx | \Omega | 
N

N\sum 
n=1

| \nabla \^\phi (xn, y)| 2,
\int 
\Omega 

f(x)\^\phi (x, 0)dx \approx | \Omega | 
N

N\sum 
n=1

f(xn)\^\phi (xn, 0).

For the integral in terms of y over (0,\infty ), a specific quadrature rule is needed due
to the singularity at y = 0. It is shown in [4, 6] that the infinite integral involving
fractional operators can be effectively computed by sinc quadrature. More precisely,
we use the change of variables y = e\mu so that

(4.13)

\int \infty 

0

y\alpha g(y)dy =

\int \infty 

 - \infty 
e(\alpha +1)\mu g(e\mu )d\mu 

for all g \in L1
y\alpha (0,\infty ). Given \=h > 0, let

(4.14) N+ :=

\biggl\lceil 
\pi 2

4s\=h2

\biggr\rceil 
, N - :=

\biggl\lceil 
\pi 2

4(1 - s)\=h2

\biggr\rceil 
, \mu m := m\=h;

then (4.13) is evaluated by quadrature nodes \{ \mu m\} m= - N - ,...,N+
and uniform weights

\=h; namely,

(4.15)

\int \infty 

 - \infty 
e(\alpha +1)\mu g(e\mu )d\mu \approx \=h

N+\sum 
m= - N - 

e(\alpha +1)\mu mg(e\mu m).

Combining (4.12) and (4.15), we have an approximate functional of \scrI given by
(4.16)

\scrI \scrT ,\=h[
\^\phi (x, y)] =

| \Omega | 
N

\left(  \=h

N+\sum 
m= - N - 

e(\alpha +1)\mu m

N\sum 
n=1

| \nabla \^\phi (xn, e
\mu m)| 2  - ds

N\sum 
n=1

f(xn)\^\phi (xn, 0)

\right)  .

Practically, we solve the optimization

(4.17) min
\^\phi \in \scrN L,M,\sigma ,h

\scrI \scrT ,\=h[
\^\phi ],

whose solution can be regarded as a practical numerical solution of (2.22).

5. Numerical experiments.

5.1. The setting. The proposed method is tested by numerical experiments in
this section. Deep learning techniques are utilized to solve the minimization (4.17).
The overall setting is summarized as follows.

\bullet Environment. The experiment is performed in Python environment. PyTorch
library with CUDA toolkit is utilized for neural network implementation and
GPU-based parallel computing. The codes can be simply implemented on a
desktop.

\bullet Optimizer and hyperparameters. The network-based optimization (4.17) is
solved by the stochastic gradient descent (SGD) from PyTorch library. The
SGD is implemented for totally 5000 epochs, with adaptively decaying learn-
ing rates.
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\bullet Network setting. The special network structure (3.5) is adopted. We choose
\sigma as the ReLU function. The parameters in \theta \prime and \theta \prime \prime are initialized by

(5.1) a,Wl, bl \sim U( - 
\surd 
M,

\surd 
M), l = 1, . . . , L.

And \gamma \prime , \gamma \prime \prime are initialized as 0.5. All these parameters are trained in the
learning process.

\bullet Numerical quadrature. For quadrature (4.12) over \Omega , we adopt the quasi--
Monte Carlo with Halton sequence. For the cases of d = 3 and 10, totally
N = 105 and 5\times 105 sample points are used in the Monte Carlo quadrature,
separated as 4 and 10 batches in the SGD, respectively. The sinc quadrature
parameter \=h = is set as 1/3.

\bullet Testing set and error evaluation. We generate a testing set \scrX consisting of
104 random points uniformly distributed in \Omega for error evaluation. Suppose
\^\phi (x, y) is the neural network obtained by our method and U(x) is the true
solution of the original fractional Laplacian problem (1.1); then the following
relative \ell 2 error will be computed:

(5.2) e\ell 2(\scrX ) :=

\Biggl( \sum 
x\in \scrX 

| \^\phi (x, 0) - U(x)| 2/
\sum 
x\in \scrX 

| U(x)| 2
\Biggr) 1

2

.

5.2. A model problem. In this example, we solve the following problem with
an explicit solution to test the accuracy of the proposed method,

(5.3)

\Biggl\{ 
( - \Delta )su(x) = (d\pi 2)s

\prod d
i=1 sin(\pi xi) \forall x := [x1, . . . , xd] \in \Omega := ( - 1, 1)d,

u(x) = 0 \forall x \in \partial \Omega ,

whose true solution is given by u(x) =
\prod d

i=1 sin(\pi xi). We specify the boundary

function h(x) =
\prod d

i=1(1 - x2
i ) in the network architecture (3.5).

5.2.1. Network size test. First, we solve the problem (5.3) with s = 0.5 using
special network (3.5) of various network sizes. The proposed method is implemented
with network depth L = 2, 3 and width M = 25, 50, 100, 200. The errors of the
numerical solutions are listed in Table 1, as well as the total running time. We also
computed the numerical error orders with respect toM . Note that most of the running
time is occupied by training the networks, and very little is for the testing process
(computing the errors).

From the table, it is observed that using larger sizes improves the accuracy at the
expense of extra running time. For a fixed width M , the obtained error is reduced by
more than half from L = 2 to L = 3. For a fixed depth L, the numerical order with
respect to M is roughly around the theoretical order  - 1/2 proved in Theorem 4.3,
and the deviation is probably due to the stochasticity and capability of the learning
algorithm. Overall, the size pair (L,M) = (3, 200) obtains the most accurate solution;
hence we continue using it in the following tests.

5.2.2. Comparison of structures. Next, this problem is solved for d = 3 with
s = 0.1, 0.3, 0.5, 0.7, 0.9. We test both the proposed special structure (3.5) and the
following simple FNN structure for a comparison:

(5.4) \^\phi (x, y) = \^\phi \prime (x, y)h(x)e - 
1
2y,
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Table 1
Errors e\ell 2 (\scrX ), error orders with respect to M , and running time (seconds) for various L and

M when d = 3.

L = 2 L = 3

M Error Order Running time Error Order Running time

25 8.252\times 10 - 2 N.A. 7.8\times 103 2.410\times 10 - 2 N.A. 8.0\times 103

50 4.337\times 10 - 2  - 0.93 7.7\times 103 2.071\times 10 - 2  - 0.22 8.0\times 103

100 3.522\times 10 - 2  - 0.3 7.9\times 103 1.371\times 10 - 2  - 0.59 8.6\times 103

200 2.529\times 10 - 2  - 0.48 8.6\times 103 8.424\times 10 - 3  - 0.7 1.3\times 104

where \^\phi \prime is a generic FNN. Note that in (5.4) the power of the exponent is fixed
with  - 1/2 instead of a trainable parameter, and no singular term is introduced. By
this design, the comparison can reveal the advantages of using trainable exponential
decaying powers and the special singular term. For both structures, we set L = 3 and
M = 200 for the involved FNN.

The error curves versus epochs of the SGD are shown in Figure 1, and the errors
of the finally obtained solutions are listed in Table 2. It is observed that for each
structure, the smallest error is obtained when s = 0.5, while larger errors are obtained
when s is close to 0 or 1. This is natural since the true solution has no singularity if s =
0.5 and has higher singularity if s approaches 0 or 1. Moreover, from the comparison,
it is clear that the special structure outperforms the simple one in obtaining smaller
errors. We also remark that the time cost of the simple structure is only slightly less
than the special structure.

5.2.3. High-dimensional simulation. Finally, we conduct a high-dimensional
test by solving the model problem (5.3) of d = 10 and s = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8.
We continue using the special structure of L = 3 and M = 200 for approximation.
The error curves and final errors are shown in Figure 2 and Table 3. We observe
that the proposed method is still effective for high dimensions, obtaining the errors
O(10 - 2). On the other hand, the smallest error is obtained between s = 0.4 and 0.5.

To the best of our knowledge, our method is the first successful attempt at a
10-dimensional spectral fractional Laplacian equation. The existing methods [24, 11]
using finite elements or Laguerre functions show their effectiveness in low-dimensional
problems (d = 1, 2), while they are incapable of high-dimensional cases due to the
limitation of storage. Therefore, we do not conduct a numerical comparison in this
work.

6. Conclusion. In summary, we develop a novel deep learning-based method to
solve the spectral fractional Laplacian equation numerically. First, we reformulate the
fractional equation as a regular partial differential equation of one more dimension
by the Caffarelli--Silvestre extension. Next, we transform the extended problem to
an equivalent minimal functional problem and characterize the space of the weak
solutions. To deal with the possible high dimensions, we employ FNNs to construct
a special approximate class of the solution space, by which the approximate solution
has consistent properties of the true solution. We then solve the minimization in
the approximate class. In theory, we studied the approximation error of the special
class under Barron-type hypotheses and thereafter derive the solution error of this
method. Finally, the effectiveness of the proposed deep Ritz method is illustrated in
high-dimensional simulations.
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Fig. 1. Errors e\ell 2 (\scrX ) versus epochs for various s using the special or simple structure when
d = 3.

Table 2
Errors e\ell 2 (\scrX ) and running time (seconds) for various s using the special or simple structure

when d = 3.

Special structure in (3.5) Simple structure in (5.4)

s Error Running time Error Running time

0.1 4.619\times 10 - 2 8.7\times 103 5.402\times 10 - 1 8.5\times 103

0.3 7.576\times 10 - 3 9.9\times 103 1.800\times 10 - 2 9.6\times 103

0.5 8.424\times 10 - 3 1.3\times 104 1.257\times 10 - 2 1.1\times 104

0.7 8.476\times 10 - 3 1.8\times 104 8.498\times 10 - 3 1.5\times 104

0.9 1.691\times 10 - 2 2.5\times 104 2.134\times 10 - 2 2.3\times 104

In this work, we consider the error between the minimizer of the energy functional
\scrI in the approximation class and the true solution of the original problem. However,
practically one needs to use numerical quadrature to compute \scrI , which brings extra
errors. Consequently, future work may include the error analysis for the minimizer of
the empirical loss function \scrI \scrT ,\=h (4.16) discretized from \scrI by the Monte Carlo method
and sinc quadrature. More precisely, let u\ast be the true solution of (1.4), and let

(6.1) \^u = argmin
w\in \scrN 

\scrI [w], \^u\scrT ,\=h = argmin
w\in \scrN 

\scrI \scrT ,\=h[w]
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Fig. 2. Errors e\ell 2 (\scrX ) versus epochs for various s when d = 10.

Table 3
Errors e\ell 2 (\scrX ) and running time (seconds) for various s when d = 10.

s Error Running time

0.2 7.134\times 10 - 2 2.4\times 104

0.3 6.029\times 10 - 2 2.5\times 104

0.4 5.012\times 10 - 2 2.7\times 104

0.5 5.158\times 10 - 2 2.9\times 104

0.6 6.603\times 10 - 2 3.4\times 104

0.7 6.824\times 10 - 2 4.1\times 104

0.8 8.215\times 10 - 2 5.6\times 104

for some DNN-based hypothesis space \scrN ; then

(6.2) \| u\ast  - \^u\scrT ,\=h\| \leq \| u\ast  - \^u\| + \| \^u - \^u\scrT ,\=h\| .

Note that \| u\ast  - \^u\| has been investigated, and it suffices to consider \| \^u  - \^u\scrT ,\=h\| .
Suppose \scrI has a bounded inverse; then

(6.3) \| \^u - \^u\scrT ,\=h\| \leq \| \scrI  - 1\| 
\bigm| \bigm| \scrI [\^u] - \scrI [\^u\scrT ,\=h]

\bigm| \bigm| \leq \| \scrI  - 1\| 
\bigl( 
\scrI [\^u\scrT ,\=h] - \scrI [\^u]

\bigr) 
\leq \| \scrI  - 1\| 

\bigl( 
\scrI [\^u\scrT ,\=h] - \scrI [\^u] + \scrI \scrT ,\=h[\^u\scrT ,\=h] - \scrI \scrT ,\=h[\^u\scrT ,\=h]

\bigr) 
\leq \| \scrI  - 1\| 

\bigl[ \bigl( 
\scrI [\^u\scrT ,\=h] - \scrI \scrT ,\=h[\^u\scrT ,\=h]

\bigr) 
+
\bigl( 
\scrI \scrT ,\=h[\^u] - \scrI [\^u]

\bigr) \bigr] 
,

where we use the fact that \scrI [\^u] \leq \scrI [\^u\scrT ,\=h] and \scrI \scrT ,\=h[\^u\scrT ,\=h] \leq \scrI \scrT ,\=h[\^u]. On the right-
hand side of (6.3), the first term describes the generalization error of the empirical
loss minimization over the hypothesis space, and the second term characterizes the
bias coming from the numerical quadrature of the integrals. In [19], related analysis is
conducted for the Poisson equation and Schr\"odinger equation using Rademacher com-
plexity, but it is only for the Monte Carlo quadrature. It is promising and challenging
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to do similar analysis for our method on fractional Laplacian equations, which in-
volves both the stochastic Monte Carlo method and the deterministic sinc quadrature
for approximation.
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